Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

luis fernandez

Luis Fernandez

Visiting Investigator

Andrea Citrini

Andrea Citrini

Postdoctoral Fellow

Abstract
The magnetic and structural properties of the recently discovered pnictogen/chalcogen-free superconductor LaFeSiH have been investigated by 57Fe synchrotron M & ouml;ssbauer source spectroscopy, X-ray and neutron powder diffraction, and 29Si nuclear magnetic resonance spectroscopy. In contrast with earlier work suggesting the presence of an orthorhombic and magnetic ground state as in underdoped Fe -based pnictides, our results unambiguously establish that LaFeSiH is in fact similar to strongly overdoped Fe -based pnictides: there is no magnetic order (including under hydrostatic pressure up to 18.8 GPa), nor even fluctuating local moments and the system remains tetragonal down to 2 K. This raises the prospect of enhancing the Tc of LaFeSiH by reducing its carrier concentration through appropriate chemical substitutions.
View Full Publication open_in_new
Abstract
The lattice dynamics of the superconducting materials LaFeSiH and LaFeSiO 1 - delta as well as their intermetallic precursor LaFeSi are investigated by polarized Raman spectroscopy and first-principles calculations, together with X-ray and advanced electron diffraction techniques for their structural analysis. We find that the Fe-dominated Raman-active modes reflect the chemical peculiarities of these silicides compared to their pnictide counterparts, with enhanced structural couplings between the FeSi layer and the spacer that can be related to the ionic vs . covalent character of the latter. In addition, we find signatures of enhanced electron-phonon coupling for some of the Raman-active modes. Beyond that, our study reveals intriguing Fe-based Raman features as well as structural subtleties in LaFeSiH suggesting that this superconductor may formally be non-centrosymmetric.
View Full Publication open_in_new
Shasta Dam in Northern California as seen from a distance. Mountains are green in the background.
June 07, 2024
Press Release

Dams and reservoirs can’t meet future water storage needs

Abstract
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
View Full Publication open_in_new
Abstract
Reservoirs exert a profound influence on the cycling of dissolved organic matter (DOM) in inland waters by altering flow regimes. Biological incubations can help to disentangle the role that microbial processing plays in the DOM cycling within reservoirs. However, the complex DOM composition poses a great challenge to the analysis of such data. Here we tested if the interpretable machine learning (ML) methodologies can contribute to capturing the relationships between molecular reactivity and composition. We developed time-specific ML models based on 7-day and 30-day incubations to simulate the biogeochemical processes in the Three Gorges Reservoir over shorter and longer water retention periods, respectively. Results showed that the extended water retention time likely allows the successive microbial degradation of molecules, with stochasticity exerting a non-negligible effect on the molecular composition at the initial stage of the incubation. This study highlights the potential of ML in enhancing our interpretation of DOM dynamics over time.
View Full Publication open_in_new
Don Ngo

Don Ngo

Research Software Engineer

Abstract
A bright (m(F150W,AB) = 24 mag), z = 1.95 supernova (SN) candidate was discovered in JWST/NIRCam imaging acquired on 2023 November 17. The SN is quintuply imaged as a result of strong gravitational lensing by a foreground galaxy cluster, detected in three locations, and remarkably is the second lensed SN found in the same host galaxy. The previous lensed SN was called "Requiem," and therefore the new SN is named "Encore." This makes the MACS J0138.0-2155 cluster the first known system to produce more than one multiply imaged SN. Moreover, both SN Requiem and SN Encore are Type Ia SNe (SNe Ia), making this the most distant case of a galaxy hosting two SNe Ia. Using parametric host fitting, we determine the probability of detecting two SNe Ia in this host galaxy over a similar to 10 yr window to be approximate to 3%. These observations have the potential to yield a Hubble constant (H-0) measurement with similar to 10% precision, only the third lensed SN capable of such a result, using the three visible images of the SN. Both SN Requiem and SN Encore have a fourth image that is expected to appear within a few years of similar to 2030, providing an unprecedented baseline for time-delay cosmography.
View Full Publication open_in_new
Abstract
Fixed nitrogen species generated by the early Earth's atmosphere are thought to be critical to the emergence of life and the sustenance of early metabolisms. A previous study estimated nitrogen fixation in the Hadean Earth's N2/CO2-dominated atmosphere; however, that previous study only considered a limited chemical network that produces NOx species (i.e., no HCN formation) via the thermochemical dissociation of N2 and CO2 in lightning flashes, followed by photochemistry. Here, we present an updated model of nitrogen fixation on Hadean Earth. We use the Chemical Equilibrium with Applications (CEA) thermochemical model to estimate lightning-induced NO and HCN formation and an updated version of KINETICS, the 1-D Caltech/JPL photochemical model, to assess the photochemical production of fixed nitrogen species that rain out into the Earth's early ocean. Our updated photochemical model contains hydrocarbon and nitrile chemistry, and we use a Geant4 simulation platform to consider nitrogen fixation stimulated by solar energetic particle deposition throughout the atmosphere. We study the impact of a novel reaction pathway for generating HCN via HCN2, inspired by the experimental results which suggest that reactions with CH radicals (from CH4 photolysis) may facilitate the incorporation of N into the molecular structure of aerosols. When the HCN2 reactions are added, we find that the HCN rainout rate rises by a factor of five in our 1-bar case and is about the same in our 2- and 12-bar cases. Finally, we estimate the equilibrium concentration of fixed nitrogen species under a kinetic steady state in the Hadean ocean, considering loss by hydrothermal vent circulation, photoreduction, and hydrolysis. These results inform our understanding of environments that may have been relevant to the formation of life on Earth, as well as processes that could lead to the emergence of life elsewhere in the universe.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025