Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Estimates of the oxidation states of magmas are important to current investigations of the geochemical characteristics of their source regions and of evolved magmatic series created during differentiation. One means of achieving such estimates is to capitalize on compositions of coexisting cubic and rhombohedral Fe-Ti oxides determined by electron microprobe. A combination of experimental calibration points and thermodynamic modeling provides a basis for translating such compositions into T-f(O2) values. This has been done until recently by estimating Fe3+/Sigma Fe on the basis of charge balance and stoichiometry by the method of Droop (1987), after matrix corrections of X-ray intensity data have been performed, as EPMA cannot be used routinely to distinguish different elemental valence states, much less accurately quantify abundances of Fe3+ and Fe2+. The traditional approach of undertaking post-data-reduction calculations falls short of attaining the best possible quantitative results. The tactical choice of not accounting for light elements that have not been explicitly analyzed prior to matrix corrections of X-ray intensity data leads to systematic errors in reported oxide abundances for measured elements. This article addresses one such issue, the oxygen associated with Fe3+ (hereafter "excess oxygen"), on the basis of coexisting Fe-Ti oxides from Andean lavas. A new software routine in probe for EPMA (PFE) uses an iterative calculation scheme to calculate amounts of excess oxygen that would not be considered if all iron were assumed to be ferrous and then applies this excess oxygen during matrix corrections. The PFE approach reveals that Fe-concentrations have been underestimated, universally, in these minerals because O atoms absorb FeKa radiation: discrepancies increase as total Fe and Fe3+/Fe2+, hence excess oxygen, increase. Analyses of the most Fe-rich cubic oxide compositions in this data set have similar to 6 wt% excess oxygen and similar to 1 wt% more FeO+Fe2O3 than would be reported without incorporating the impact of excess oxygen in matrix corrections. Minor to negligible differences in other elements are also observed. These effects are not because excess oxygen is directly attributed to these elements, although some may be present in multiple valence states, as matrix corrections are undertaken on the basis of the conventional assumptions that they occur as Cr3+, V3+, Mn2+, Mg2+, Ca2+, and Si4+. Rather, variably small increases in total Fe propagate through the matrix corrections for other elements, and these differences may be recorded as minor increases or decreases in some concentrations, depending on the particular element and the amount of change in Fe-concentration. Fe3+/Sigma Fe in analyses produced with the PFE routine are essentially identical to those determined in the traditional mode, as cation proportions calculated on the basis of charge balance and stoichiometry, with the method of Droop (1987), is a necessary step. The new method: (1) provides more accurate concentrations, mainly for Fe and Ti; (2) is applicable to any mineral containing ferric iron (subject to stoichiometric constraints); (3) provides more accurate analytical totals, which can be advantageous for evaluating analytical quality; and (4) does not impact estimates of oxidation state.
View Full Publication open_in_new
Abstract
Five Type A CAIs from three CV3 chondrites (Vigarano, Northwest Africa 3118, Allende), which differ in age by no more than -105 years, show mineralogical and textural evidence of gradual transition into Type Bs, indicating that Type B inclusions formed by evolution of Type A CAIs in the solar nebula. This model differs from the conventional condensation model in which aggregates of condensate grains form different kinds of CAIs depending on the relative populations of different kinds of grains. In our model the pyroxene forms nearly isochemically by reaction of perovskite with melilite under highly reducing conditions. Anorthite requires the addition of silica from the gas, and originally forms as veins and reaction rims on gehlenitic melilite within Fluffy Type As. Later partial re-melting of these assemblages results in the formation of poikilitic pyroxene and anorthite that enclose rounded (partially melted) tablets of melilite. Oxygen isotopes in four of the CAIs support the formation of Ti-rich 16O-depleted pyroxene from 16O-depleted perovskite, but not in the fifth CAI. An alternative possibility is that Ti-rich 16O-depleted pyroxene is the result of later solid-state exchange that preferentially affects the most Ti-rich pyroxene. Regardless of the origin of the 16O-depleted pyroxene, we give a model for nebular reservoir evolution based on sporadic FU-Orionis flare-ups in which the 16O-rich region near the proto-Sun fluctuated in size depending on whether the protoSun was in flare-up stage or quiescent. Published by Elsevier Ltd.
View Full Publication open_in_new
Abstract
Measurements of trace element chemistry, mineralogy, and isotope geochemistry are rarely combined with known environmental data to provide a more complete story about how environmental conditions are recorded in biomineral carbonates. Here, cultured (farmed) pearls serve as relatively pristine time capsules to study these geochemical and mineral-based proxies. Cathodoluminescence (CL) imaging and Raman spectroscopic mapping on the & mu;m-scale reveals that heterogeneous crystal bonding environments, geochemistry, and organic contents across the growth history of a freshwater pearl reflect environmental shifts in Kentucky Lake, TN, USA. A major CL peak at 551 nm aligns with increased manganese and organic contents and correlates with lake conductivity and alkalinity data. These CL features are temporally offset from previous 10-& mu;m-scale aragonite nacre oxygen isotope measurements (& delta;18OArg) that record periods of minimum lake temperatures in winter seasons. Thus, we suggest that these trace element and organic features represent autumn or spring rainy seasons that experience lake turnover events and more land runoff rich in Mn and nutrients, increasing aragonite-bound Mn and organic contents in the nacre. This 551 nm signal is absent in Mn-poor saltwater pearl nacre. A second CL peak at 444 nm shows different heterogeneous features likely due to crystal structure shifts, as evidenced by correlations to a Raman map of translational (T): librational (L) mode height ratios typically signaling changes in nacre tablet orientation. Thus, we show that & mu;m-scale CL and Raman mapping may serve as complementary environmental proxies to novel SIMS-based & delta;18OArg temperature proxies in order to capture additional information about local lake environments at seasonal to sub-seasonal temporal resolutions.
View Full Publication open_in_new
Abstract
Determination of alkali elements is important to Earth scientists, yet suitable and reliable microanalytical reference materials are lacking. This paper proposes a new albite reference material and evaluates the potential for future K-feldspar reference materials. The proposed Piz Beverin albite reference material from Switzerland yields a homogeneous composition at the centimetre- to micrometre-scale for Si, Al and Na with < 2000 mu g g(-1) total trace elements (mostly heterogeneously distributed Ca, K and Sr). EPMA and LA-ICP-MS measurements confirm a composition of 99.5(2)% albite component, which is supported further by bulk XRF measurements. A round robin evaluation involving nine independent EPMA laboratories confirms its composition and homogeneity for Si, Al and Na. In addition, a set of five distinct clear K-feldspar samples was evaluated as possible reference materials. The first two crystals of adular and orthoclase yield unacceptable inhomogeneities with > 2% relative local variations of Na, K and Ba contents. The three other investigated sets of K-feldspar crystals are yellow sanidine crystals from Itrongay (Madagascar). Despite distinct compositions, EPMA confirms they are each homogeneous at the centimetre to micrometre scale for Si, Al and K and have no apparent inclusions; further investigation to find larger amounts of these materials is therefore justified.
View Full Publication open_in_new
Abstract
The Mighei-like carbonaceous (CM) chondrites, the most abundant carbonaceous chondrite group by number, further our understanding of processes that occurred in their formation region in the protoplanetary disk and in their parent body/bodies and provide analogs for understanding samples returned from carbonaceous asteroids. Chondrules in the CMs are commonly encircled by fine-grained rims (FGRs) whose origins are debated. We present the abundances, sizes, and petrographic observations of FGRs in six CMs that experienced varying intensities of parent body processing, including aqueous and thermal alteration. The samples studied here, in approximate order of increasing thermal alteration experienced, are Allan Hills 83100, Murchison, Meteorite Hills 01072, Elephant Moraine 96029, Yamato-793321, and Pecora Escarpment 91008. Based on observations of these CM chondrites, we recommend a new average apparent (2-D) chondrule diameter of 170 lm, which is smaller than previous estimates and overlaps with that of the Ornans-like carbonaceous (CO) chondrites. Thus, we suggest that chondrule diameters are not diagnostic for distinguishing between CM and CO chondrites. We also argue that chondrule foliation noted in ALH 83100, MET 01072, and Murchison resulted from multiple lowintensity impacts; that FGRs in CMs formed in the protoplanetary disk and were subsequently altered by both aqueous and thermal secondary alteration processes in their parent asteroid; and that the heat experienced by some CM chondrites may have originated from solar radiation of their source body/bodies during close solar passage as evidenced by the presence of evolved desiccation cracks in FGRs that formed by recurrent wetting and desiccation cycles.
View Full Publication open_in_new
Abstract
The detection and quantification of metal sulfides in host rocks by electrical measurements have been priorities for field and laboratory studies, motivated by mineral prospecting and fundamental interest in the mantle structure or core/mantle differentiation, among other reasons. Here, we reanalyze electrical data for a dunite host with added FeS or Fe-S-Ni (Saxena et al. 2021), and report additional experimental runs along with electron microprobe analyses. The applied pressure was 2 GPa; impedance spectra were acquired while annealing at 1023 K (below the metal-sulfide solidus), and while varying temperature from 570 to 1650 K. Addition of 6.5 or 18 vol% FeS strongly enhances conductivity of the bulk sample compared with that of the dunite host, though values are 100-100 000 times less than those of pure FeS. These results indicate that most metal sulfide content is not part of a viable conductive path, even for the 18 vol% quantity. Nevertheless, the relatively high conductivity and weak temperature dependence of the 18 vol% sample reveal that contiguous paths of solid or molten FeS span the electrodes. The sample with 6.5 vol% sulfide also exceeds the percolation threshold for temperatures as low as similar to 100 K below the eutectic melting point, likely because FeS softens. Conductivity is nearly unchanged upon crossing the eutectic temperature, however a decline over 1400-1500 K reveals that the 6.5 vol% molten FeS forms a fragile electrical network in dunite. Samples with Fe50S40Ni10 or Fe40S40Ni20 (at%) are less conductive than pure dunite at temperatures below similar to 1450 K. This surprising result, likely caused by a reducing influence of Fe or Ni metal, does not support the use of FeS as an analog for compositions with nickel or excess metal. Our findings suggest that probing the electrical network of metal sulfides as solids complements other studies focused on connectivity of molten metal sulfides.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Current page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025