Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

    Giant Magellan Telescope
    Public Program

    In the Pursuit of Light: Creating One of the World's Largest Telescopes

    Dr. Rebecca Bernstein

    April 1

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Probability density Probability density .0 0.8 0.6 0.4 0.2 0.0 0.6 0.4 0.2 0.0 142 Nd-10-9-8 182 W MORB Nd standard OIB-7-6-5-4-3-2-1 0 1 2 3 OIB MORB W standard-10-9-8-7-6-5-4-3-2-1 0 1 2 3 New high precision Nd and W isotopic compositions were obtained on the same basalt samples from the Pacific-Antarctic Ridge. These provide the best estimate so far for the mu 142 Nd and mu 182 W values of the depleted mantle source of mid-ocean ridge basalts known as DMM. The PAR basalts yield a mean mu 142 Nd = - 1.6 +/- 5.0 (2 s.d.) and mu 182 W = - 1.9 +/- 3.5 (2 s.d.), which together with the literature data allow the isotope composition of the DMM to be constrained. The present-day DMM mu 182 W is 10 - 20 ppm lower than that of the Archean mantle. This decrease could be related to the broad incorporation of mantle plume material into the upper mantle, starting between 2.4 and 3 billion years ago, due to the onset of deep cold slab subduction, and its attendant return mantle flow.
open_in_new
Patricio Schurter

Patricio Schurter

Mechanical Engineer

Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and ozone depletion agent, with a significant natural source from marine oxygen-deficient zones (ODZs). Open questions remain, however, about the microbial processes responsible for this N2O production, especially hybrid N2O production when ammonia-oxidizing archaea are present. Using 15N-labeled tracer incubations, we measured the rates of N2O production from ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-) in the eastern tropical North Pacific ODZ and the isotopic labeling of the central (alpha) and terminal (beta) nitrogen (N) atoms of the N2O molecule. We observed production of both doubly and singly labeled N2O from each tracer, with the highest rates of labeled N2O production at the same depths as the near-surface N2O concentration maximum. At most stations and depths, the production of 45N2O alpha and 45N2O beta were statistically indistinguishable, but at a few depths there were significant differences in the labeling of the two nitrogen atoms in the N2O molecule. Implementing the rates of labeled N2O production in a time-dependent numerical model, we found that N2O production from NO3- dominated at most stations and depths, with rates as high as 1600 +/- 200 pM N2O d-1. Hybrid N2O production, one of the mechanisms by which ammonia-oxidizing archaea produce N2O, had rates as high as 230 +/- 80 pM N2O d-1 that peaked in both the near-surface and deep N2O concentration maxima. Based on the equal production of 45N2O alpha and 45N2O beta in the majority of our experiments, we infer that hybrid N2O production likely has a consistent site preference, despite drawing from two distinct substrate pools. We also found that the rates and yields of hybrid N2O production were enhanced at low dissolved oxygen concentrations ([O2]), with hybrid N2O yields as high as 20 % at depths where [O2] was below detection (880 nM) but nitrification was still active. Finally, we identified a few incubations with [O2] up to 20 mu M where N2O production from NO3- was still active. A relatively high O2 tolerance for N2O production via denitrification has implications for the feedbacks between marine deoxygenation and greenhouse gas cycling.
open_in_new
Abstract
Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.
open_in_new
Rachel Rausch Headshot

Rachel Rausch

Assistant to the Director

Abstract
We report the discovery of two transiting planets detected by the Transiting Exoplanet Survey Satellite (TESS), TOI-2374 b and TOI-3071 b, orbiting a K5V and an F8V star, respectively, with periods of 4.31 and 1.27 d, respectively. We confirm and characterize these two planets with a variety of ground-based and follow-up observations, including photometry, precise radial velocity monitoring and high-resolution imaging. The planetary and orbital parameters were derived from a joint analysis of the radial velocities and photometric data. We found that the two planets have masses of (57 +/- 4) M-circle plus or (0.18 +/- 0.01) M-J, and (68 +/- 4) M-circle plus or (0.21 +/- 0.01) M-J, respectively, and they have radii of (6.8 +/- 0.3) R-circle plus or (0.61 +/- 0.03) R-J and (7.2 +/- 0.5) R-circle plus or (0.64 +/- 0.05) R-J, respectively. These parameters correspond to sub-Saturns within the Neptunian desert, both planets being hot and highly irradiated, with T-eq approximate to 745 K and T-eq approximate to 1812 K, respectively, assuming a Bond albedo of 0.5. TOI-3071 b has the hottest equilibrium temperature of all known planets with masses between 10 and 300 M-circle plus and radii less than 1.5 R-J. By applying gas giant evolution models we found that both planets, especially TOI-3071 b, are very metal-rich. This challenges standard formation models which generally predict lower heavy-element masses for planets with similar characteristics. We studied the evolution of the planets' atmospheres under photoevaporation and concluded that both are stable against evaporation due to their large masses and likely high metallicities in their gaseous envelopes.
open_in_new
Abstract
Understanding the nature of the luminous 1991T-like supernovae (SNe) is of great importance to SN cosmology as they are likely to have been more common in the early Universe. In this paper, we explore the observational properties of 1991T-like SNe to study their relationship to other luminous, slow-declining Type Ia supernovae (SNe Ia). From the spectroscopic and photometric criteria defined in Phillips et al., we identify 17 1991T-like SNe from the literature. Combining these objects with 10 1991T-like SNe from the Carnegie Supernova Project-II, the spectra, light curves, and colors of these events, along with their host galaxy properties, are examined in detail. We conclude that 1991T-like SNe are closely related in essentially all of their UV, optical, and near-infrared properties-as well as their host galaxy parameters-to the slow-declining subset of Branch core-normal SNe and to the intermediate 1999aa-like events, forming a continuum of luminous SNe Ia. The overriding difference between these three subgroups appears to be the extent to which Ni-56 mixes into the ejecta, producing the premaximum spectra dominated by Fe iii absorption, the broader UV light curves, and the higher luminosities that characterize the 1991T-like events. Nevertheless, the association of 1991T-like SNe with the rare Type Ia circumstellar material SNe would seem to run counter to this hypothesis, in which case 1991T-like events may form a separate subclass of SNe Ia, possibly arising from single-degenerate progenitor systems.
open_in_new
Abstract
Boasting a 6.5m mirror in space, JWST can increase by several times the number of supernovae (SNe) to which a redshift-independent distance has been measured with a precision distance indicator (e.g., TRGB or Cepheids); the limited number of such SN calibrators currently dominates the uncertainty budget in distance ladder Hubble constant ( H 0 ) experiments. JWST/NIRCAM imaging of the Virgo Cluster galaxy NGC 4536 is used here to preview JWST program GO-1995, which aims to measure H 0 using three stellar distance indicators (Cepheids, TRGB, JAGB/carb on stars). Each population of distance indicator was here successfully detected– with sufficiently large number statistics, well-measured fluxes, and characteristic distributions consistent with ingoing expectations–so as to confirm that we can acquire distances from each method precise to about 0.05 mag (statistical uncertainty only). We leverage overlapping HST imaging to identify TRGB stars, cross-match them with the JWST photometry, and present a preliminary constraint on the slope of the TRGB’s F115W-(F115W − F444W) relation equal to −0 .99 ± 0 .16 mag/mag. This slope is consistent with prior slope measurements in the similar 2MASS J band, as well as with predictions from the BASTI isochrone suite. We use the new TRGB slope estimate to flatten the two-dimensional TRGB feature and measure a (blinded) TRGB distance relative to a set of fiducial TRGB colors, intended to represent the absolute fiducial calibrations expected from geometric anchors such as NGC 4258 and the Magellanic Clouds. In doing so, we empirically demonstrate that the TRGB can be used as a standardizable candle at the IR wavelengths accessible with JWST.
open_in_new
Abstract
Scientific ocean drilling cores recovered years ago (legacy cores), especially as recovered by rotary drilling, commonly show incomplete recovery and core disturbance. We present a novel method to date such cores by presenting the first high-precision U-Pb zircon ages targeting the duration of the Miocene Climate Optimum (MCO; ca. 17-14 Ma) from volcanic ashes at Ocean Drilling Program Site 1000 (on the Nicaragua Rise in the Caribbean Sea). We place these ages within a newly developed framework to address incomplete core recovery and use them to calibrate a high-resolution bulk carbonate 6 13 C and 6 18 O record. Our Site 1000 ages show that volcanism of the Columbia River Basalt Group (CRBG) large igneous province was coincident with the interval of greatest sustained MCO warmth at this site. However, if the CRBG were the primary driver of the MCO, our chronology may allow for outgassing preceding volcanism as a major source of CO 2 . We thus document a promising new way to obtain highly resolved, accurate, and precise numerical age models for legacy deep-sea sediment cores that does not depend on correlation to other records.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025