Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Cells under a microscope courtesy of Ethan Greenblatt
    Public Program

    Carnegie Science SOCIAL: Fun & Games

    Carnegie Science Investigators

    September 30

    7:00pm EDT

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Recent JWST observations of the sub-Neptune GJ 1214 b suggest that it hosts a high-metallicity (greater than or similar to 100x solar), hazy atmosphere. Emission spectra of the planet show molecular absorption features, most likely due to atmospheric H2O. In light of this new information, we conduct a thorough reevaluation of the planet's internal structure. We consider interior models with mixed H/He/H2O envelopes of varying composition, informed by atmospheric constraints from the JWST phase curve, in order to determine possible bulk compositions and internal structures. Self-consistent atmospheric models consistent with the JWST observations are used to set boundary conditions for the interior. We find that a total envelope mass fraction of at least 8.1% is required to explain the planet's mass and radius. Regardless of H2O content, the maximum H/He mass fraction of the planet is 5.8%. We find that a 1:1 ice-to-rock ratio along with 3.4%-4.8% H/He is also a permissible solution. In addition, we consider a pure H2O (steam) envelope and find that such a scenario is possible, albeit with a high ice-to-rock ratio of at least 3.76:1, which may be unrealistic from a planet formation standpoint. We discuss possible formation pathways for the different internal structures that are consistent with observations. Since our results depend strongly on the atmospheric composition and haze properties, more precise observations of the planet's atmosphere would allow for further constraints on its internal structure. This type of analysis can be applied to any sub-Neptune with atmospheric constraints to better understand its interior.
View Full Publication open_in_new
Abstract
Synchrotron X-ray diffraction (XRD) and Raman spectroscopy in laser heated diamond anvil cells and first principles molecular dynamics (FPMD) calculations have been used to investigate the reactivity of calcite and molecular hydrogen (H 2 ) at high pressures up to 120 GPa. We find that hydrogen reacts with calcite starting below 0.5 GPa at room temperature forming chemical bonds with carbon and oxygen. This results in the unit cell volume expansion; the hydrogenation level is much higher for powdered samples. Single-crystal XRD measurements at 8 - 24 GPa reveal the presence of previously reported III, IIIb, and VI calcite phases; some crystallites show up to 4% expansion, which is consistent with the incorporation of <= 1 hydrogen atom per formula unit. At 40 - 102 GPa XRD patterns of hydrogenated calcite demonstrate broadened features consistent with the calcite VI structure with incorporated hydrogen atoms. Above 80 GPa, the C - O stretching mode of calcite splits suggesting a change in the coordination of C - O bonds. Laser heating at 110 GPa results in the formation of C - C bonds manifested in the crystallization of diamond recorded by in situ XRD at 300 K and 110 GPa and by Raman spectroscopy on recovered samples commenced with C 13 calcite. We explored several theoretical models, which show that incorporation of atomic hydrogen results in local distortions of CO 3 groups, formation of corner-shared C - O polyhedra, and chemical bonding of H to C and O, which leads to the lattice expansion and vibrational features consistent with the experiments. The experimental and theoretical results support recent reports on tetrahedral C coordination in high-pressure carbonate glasses and suggest a possible source of the origin of ultradeep diamonds.
View Full Publication open_in_new
Abstract
The germanosilicide Na4-x GeySi16-y (0.4 <= x <= 1.1, 4.7 <= y <= 9.3) was synthesized under high-pressure, high-temperature conditions. The novel guest-host compound comprises a unique tetrel framework with dual channels housing sodium and smaller, empty (Si,Ge)9 units. The arrangement represents a new structure type with an overall structural topology that is closely related to a hypothetical carbon allotrope. Topological analysis of the structure revealed that the guest environment space cannot be tiled with singular polyhedra as in cage compounds (e.g., clathrates). The analysis of natural tilings provides a convenient method to unambiguously compare related tetrel-rich structures and can help elucidate new possible structural arrangements of intermetallic compounds.
View Full Publication open_in_new
Abstract
We empirically assess estimates from v3.0 of the James Webb Space Telescope NIRCam Exposure Time Calculator (ETC) using observations of resolved stars in Local Group targets taken as part of the Resolved Stellar Populations Early Release Science (ERS) Program. For bright stars, we find that (i) purely Poissonian estimates of the signal-to-noise ratio (SNR) are in good agreement between the ETC and observations, but nonideal effects (e.g., flat-field uncertainties) are the current limiting factor in the photometric precision that can be achieved; (ii) source position offsets, relative to the detector pixels, have a large impact on the ETC saturation predictions and introducing subpixel dithers in the observation design can improve the saturation limits by up to similar to 1 mag. For faint stars, for which the sky dominates the error budget, we find that the choice in the ETC extraction strategy (e.g., aperture size relative to point-spread function size) can affect the exposure time estimates by up to a factor of 5. We provide guidelines for configuring the ETC aperture photometry to produce SNR predictions in line with the ERS data. Finally, we quantify the effects of crowding on the SNRs over a large dynamic range in stellar density and provide guidelines for approximating the effects of crowding on SNRs predicted by the ETC.
View Full Publication open_in_new
Abstract
Photosynthesis - the conversion of energy from sunlight into chemical energy - is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
View Full Publication open_in_new
Abstract
Motivation: The study of bacterial genome dynamics is vital for understanding the mechanisms underlying microbial adaptation, growth, and their impact on host phenotype. Structural variants (SVs), genomic alterations of 50 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to the absence of clear reference genomes and the presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing all metagenomic samples in a series (time or other metric) into a single co-assembly graph. The log fold change in graph coverage between successive samples is then calculated to call SVs that are thriving or declining.Results: We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, particularly as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between successive time and temperature samples, suggesting host advantage. Our approach leverages previous work in assembly graph structural and coverage patterns to provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial gene flux.Availability and implementation: rhea is open source and available at: https://github.com/treangenlab/rhea.
View Full Publication open_in_new
Abstract
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats, the unicellular oxygenic phototrophic cyanobacterium Synechococcus OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph Chloroflexus MS-CIW-1 (Chfl MS-1). We quantified the motility of individual cells and entire colonies and demonstrated that Chfl MS-1 formed bundles of filaments that moved in all directions with no directional bias to light. Syn OS-B' was slightly less motile but exhibited positive phototaxis. This binary consortium displayed cooperative behavior by moving further than either species alone and formed ordered arrays where both species aligned with the light source. No cooperative motility was observed when a non-motile pilB mutant of Syn OS-B' was used instead of Syn OS-B'. The binary consortium also produced more adherent biofilm than individual species, consistent with the close interspecies association revealed by electron microscopy. We propose that cyanobacteria and Chloroflexota cooperate in forming natural microbial mats, by colonizing new niches and building robust biofilms.
View Full Publication open_in_new
Abstract
Ukraine supplies a large proportion of grain and oilseeds to the world market and faces disruptions from the Russian invasion in 2022. Here we explore the combined effects of the invasion and climate change on Ukraine's irrigation. In 2021, only 1.6% of Ukraine's cropland was irrigated. Of this portion, 73% experienced substantial declines in irrigated crop production following the invasion. We estimate that by the mid-twenty-first century, three-quarters of croplands will experience water shortages, making business-as-usual rain-fed agricultural practices inadequate in addressing the challenges posed by climate change. We explore how leveraging local surface and groundwater resources could enable sustainable irrigation expansion over 18 million hectares of croplands and form a viable climate adaptation strategy. Finally, we identify regions for implementing enhancements or expansions of irrigation systems that can foster a more resilient agricultural sector-underscoring the growing importance of irrigation in sustaining crop production in Ukraine.
View Full Publication open_in_new
Abstract
Understanding the climate and carbon cycle response to negative CO2 emissions is important for developing climate mitigation strategies that aim to limit global warming to a specific threshold. In this study, using a coupled climate and carbon cycle model, a novel set of nine stylized simulations are conducted with cumulative emissions of 1,000 GtC, 2,000 GtC, and 5,000 GtC over 150, 250, and 500 years, followed by identical cumulative negative emissions so that the net cumulative emissions are zero. On millennial-timescales, the climate system returns close to the preindustrial state, independent of the emission and removal pathways. However, the thermal and biogeochemical inertia of the ocean play an important role in determining the climate and carbon cycle response during the emission and removal phases. When zero net emissions are reached, surface air temperature is larger by 0-1 degrees C than the preindustrial state, and the atmospheric CO2 concentration is less by 12-29 ppm. These changes increase with both the magnitude and duration of the emission and removal pulses. In contrast, hysteresis in the relationship between global mean surface temperature and cumulative carbon emissions increases with the magnitude but decreases with the duration of emission and removal pulses. Our study highlights the role of ocean inertia in the asymmetry in climate response to emissions and removals and indicates that an earlier emission reduction implying emission/removal pathways with smaller magnitudes and shorter durations for the positive and negative emission pulses would avoid larger climate and carbon cycle impacts on centennial-timescales.
View Full Publication open_in_new
Abstract
We present an analysis of Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project I and II and extend the Hubble diagram from optical to near-infrared wavelengths (uBgVriYJH). We calculate the Hubble constant, H 0, using various distance calibrators: Cepheids, the tip of the red giant branch (TRGB), and surface brightness fluctuations (SBFs). Combining all methods of calibration, we derive H 0 = 71.76 +/- 0.58 (stat) +/- 1.19 (sys) km s(-1) Mpc(-1) from the B band and H 0 = 73.22 +/- 0.68 (stat) +/- 1.28 (sys) km s(-1) Mpc(-1) from the H band. By assigning equal weight to the Cepheid, TRGB, and SBF calibrators, we derive the systematic errors required for consistency in the first rung of the distance ladder, resulting in a systematic error of 1.2 similar to 1.3 km s(-1) Mpc(-1) in H 0. As a result, relative to the statistics-only uncertainty, the tension between the late-time H 0 we derive by combining the various distance calibrators and the early-time H 0 from the cosmic microwave background is reduced. The highest precision in SN Ia luminosity is found in the Y band (0.12 +/- 0.01 mag), as defined by the intrinsic scatter (sigma int). We revisit SN Ia Hubble residual-host mass correlations and recover previous results that these correlations do not change significantly between the optical and near-infrared wavelengths. Finally, SNe Ia that explode beyond 10 kpc from their host centers exhibit smaller dispersion in their luminosity, confirming our earlier findings. A reduced effect of dust in the outskirts of hosts may be responsible for this effect.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025