Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Diana Roman and Andrea Goltz prepare a "trash-cano" at the Earth & Planets Laboratory Open House.
    Breaking News
    November 03, 2025

    Hundreds of Science Enthusiasts Attend Inaugural EPL Open House

    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Postdoc Double Feature - Shubham and Sierra
    Breaking News
    October 28, 2025

    Postdocs explore the origins of worlds in Neighborhood Lecture double feature

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report the discovery of a close-in (P orb = 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d = 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius Rp=3.37-0.20+0.15R circle plus , mass mp=16.4-4.1+4.1M circle plus , and density rho p=2.32-0.37+0.38gcm-3 for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of P rot = 8.7 +/- 0.9 days and associated rotation-based age estimate of 1.1 +/- 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period Psup approximate to 430days and amplitude similar to 100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions-including 3:2 and 4:3 resonances-cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of mb=13.3-4.5+4.7M circle plus for TOI-2015 b and mc=6.8-2.3+3.5M circle plus for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.
View Full Publication open_in_new
Abstract
Organic macromolecular matter is the dominant carrier of volatile elements such as carbon, nitrogen and noble gases in chondrites-the rocky building blocks from which Earth formed. How this macromolecular substance formed in space is unclear. Here we show that its formation could be associated with the presence of dust traps, which are prominent mechanisms for forming planetesimals in planet-forming disks. We demonstrate the existence of heavily irradiated zones in dust traps, where small frozen molecules that coat large quantities of microscopic dust grains could be rapidly converted into macromolecular matter by receiving radiation doses of up to several tens of electronvolts per molecule per year. This allows for the transformation of simple molecules into complex macromolecular matter within several decades. Up to roughly 4% of the total disk ice reservoir can be processed this way and subsequently incorporated into the protoplanetary disk midplane where planetesimals form. This finding shows that planetesimal formation and the production of organic macromolecular matter, which provides the essential elemental building blocks for life, might be linked.
View Full Publication open_in_new
Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard the Mars 2020 Perseverance rover detected so far some of the most intense fluorescence signals in association with sulfates analyzing abraded patches of rocks at Jezero crater, Mars. To assess the plausibility of an organic origin of these signals, it is key to understand if organics can survive exposure to ambient Martian UV after exposure by the Perseverance abrasion tool and prior to analysis by SHERLOC. In this work, we investigated the stability of organo-sulfate assemblages under Martian-like UV irradiation and we observed that the spectroscopic features of phthalic and mellitic acid embedded into hydrated magnesium sulfate do not change for UV exposures corresponding to at least 48 Martian sols and, thus, should still be detectable in fluorescence when the SHERLOC analysis takes place, thanks to the photoprotective properties of magnesium sulfate. In addition, different photoproduct bands diagnostic of the parent carboxylic acid molecules could be observed. The photoprotective behavior of hydrated magnesium sulfate corroborates the hypothesis that sulfates might have played a key role in the preservation of organics on Mars, and that the fluorescence signals detected by SHERLOC in association with sulfates could potentially arise from organic compounds.
View Full Publication open_in_new
Abstract
The Mars 2020 Perseverance rover has explored fluvio-lacustrine sedimentary rocks within Jezero crater. Prior work showed that igneous crater floor S & eacute;& iacute;tah and M & aacute;az formations have mafic mineralogy with alteration phases that indicate multiple episodes of aqueous alteration. In this work, we extend the analyses of hydration to targets in the Jezero western fan delta, using data from the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) Raman spectrometer. Spectral features, for example, sulfate and hydration peak positions and shapes, vary within, and across the crater floor and western fan. The proportion of targets with hydration associated with sulfates was approximately equal in the crater floor and the western fan. All hydrated targets in the crater floor and upper fan showed bimodal hydration peaks at similar to 3,200 and similar to 3,400 cm(-1). The sulfate symmetric stretch at similar to 1,000 cm(-1) coupled with a hydration peak at similar to 3,400 cm(-1) indicate that MgSO4nH(2)O (2 < n <= 5) is a likely hydration carrier phase in all units, perhaps paired with low-hydration (n <= 1) amorphous Mg-sulfates, indicated by the similar to 3,200 cm(-1) peak. Low-hydration MgSO4nH(2)O (n = 1-2) are more prevalent in the fan, and hydrated targets in the fan front only had one peak at similar to 3,400 cm(-1). While anhydrite co-occurs with hydrated Mg-sulfates in the crater floor and fan front, hydrated Ca-sulfates are observed instead at the top of the upper fan. Collectively, the data imply aqueous deposition of sediments with formation of salts from high ionic strength fluids and subsequent aridity to preserve the observed hydration states.
View Full Publication open_in_new
Abstract
Volcanic eruptions carry essential information on the dynamics of volcanic systems. Studies have documented variable eruption styles and eruptive surface deformation. However, co-eruptive subsurface structural changes remain poorly understood. Here we characterize the seismic velocity changes from July 2019 to July 2023 at Great Sitkin Volcano in the central Aleutian volcanic arc, using single-station ambient noise interferometry at five three-component seismic stations. Coincident with the lava effusion since late July 2021, about two months after the explosive eruption on 26 May 2021, we observe a sustained velocity increase, most prominently to the northwest of the caldera. We attribute this velocity increase to the structural changes with magma extrusion, with the spatial variation controlled by the geometry of the magma system or the property of shallow volcaniclastics. Our findings offer insights into understanding co-eruptive structural modifications at active volcanoes.
View Full Publication open_in_new
Abstract
We use the Ultraviolet Imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields (UVCANDELS) to measure half-light radii in the rest-frame far-UV for similar to 16,000 disk-like galaxies over 0.5 <= z <= 3. We compare these results to rest-frame optical sizes that we measure in a self-consistent way and find that the stellar mass-size relation of disk galaxies is steeper in the rest-frame UV than in the optical across our entire redshift range. We show that this is mainly driven by massive galaxies (greater than or similar to 10(10) M-circle dot), which we find to also be among the most dusty. Our results are consistent with the literature and have commonly been interpreted as evidence of inside-out growth wherein galaxies form their central structures first. However, they could also suggest that the centers of massive galaxies are more heavily attenuated than their outskirts. We distinguish between these scenarios by modeling and selecting galaxies at z = 2 from the VELA simulation suite in a way that is consistent with UVCANDELS. We show that the effects of dust alone can account for the size differences we measure at z = 2. This indicates that, at different wavelengths, size differences and the different slopes of the stellar mass-size relation do not constitute evidence for inside-out growth.
View Full Publication open_in_new
Abstract
The surface chemistry of pyrrhotites from intact particles directly collected from asteroid (162173) Ryugu was investigated by micro-Raman spectroscopy. The Raman peak characteristic to pyrrhotite was observed at around 115 cm-1 in Ryugu pyrrhotites, similar to freshly cleaved surfaces of terrestrial pyrrhotites. Additional Raman bands centered at around 220, 275, and 313 cm-1 with broadened features were also detected from the Ryugu pyrrhotites. The set of Raman bands at 220 and 275 cm-1 was assigned to typical Fe-S stretching vibrations of nu 2 (225 cm-1 ) and nu 1 (275 cm-1 ). These bands are not clearly observed in bulk crystals of pyrrhotite but appear in its nanoparticulate phase. These bands are ordinarily seen in amorphous monosulfides that formed under low oxygen fugacity ( f O 2 ) conditions in nature, indicating that the structural alteration of pyrrhotite surfaces occurred heterogeneously on the nanoscale under low f O 2 conditions. Further, the Raman band at 313 cm-1 was attributed to a characteristic tetrahedral bonding of Fe(III) in the lattice of Fe II 1-3x Fe III 1-2x S, followed by the local breakdown of the crystal lattice structures from planar bonding with Fe(II). In addition, some areas of the Ryugu pyrrhotite grains showed corroded structures with iridescence. Furthermore, assemblages of magnetite particles were also preferentially observed on small areas of the likely-dissolved pyrrhotite crystals in phyllosilicate matrices. These characteristic features in the Raman spectra and in corroded structures of Ryugu pyrrhotites record changes in the local environmental conditions via aqueous alteration. The corrosion of pyrrhotite crystals followed by the preferential formation of magnetite particles by asteroidal water is the likely product of dissolution of Fe(II) from the pyrrhotite surface and its oxidative precipitation in microchemical environments on the Ryugu parent body.
View Full Publication open_in_new
Abstract
Background Genome assembly tools are used to reconstruct genomic sequences from raw sequencing data, which are then used for identifying the organisms present in a metagenomic sample.Methodology More recently, machine learning approaches have been applied to a variety of bioinformatics problems, and in this paper, we explore their use for organism identification. We start by evaluating several commonly used metagenomic assembly tools, including PhyloFlash, MEGAHIT, MetaSPAdes, Kraken2, Mothur, UniCycler, and PathRacer, and compare them against state-of-the-art deep learning-based machine learning classification approaches represented by DNABERT and DeLUCS, in the context of two synthetic mock community datasets.Result Our analysis focuses on determining whether ensembling metagenome assembly tools with machine learning tools have the potential to improve identification performance relative to using the tools individually.Conclusion We find that this is indeed the case, and analyze the level of effectiveness of potential tool ensembling for organisms with different characteristics (based on factors such as repetitiveness, genome size, and GC content).
View Full Publication open_in_new
Abstract
Updates and corrections are made to a number of numerical entries and their references in Table 1 of the published article. Updated plots of the final run of the comparison of the tip of the red giant branch (TRGB) and Cepheid distances with metallicity, as seen in the lower panels of Figures 1 and 2 in the published article, are shown in the composite figure given here (Figure 1). The main conclusion of the published article, that there is no statistically significant correlation of the zero-point of the Cepheid period-luminosity relation with metallicity, is unchanged. The updated "statistically flat" regression is now found to be Delta mu (o)(Cepheid - TRGB) = -0.028 (+/- 0.019) x ([O/H] - 8.50) - 0.014 (+/- 0.042).
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025