Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    "Macromolecular Metabiology," used for frontispiece of CIW publication 624, "Studies of Macromolecular Biosynthesis"
    Breaking News
    October 17, 2025

    From Atoms to Cells: A History of the Biophysics Section

    Images from the night of 2025 SC79’s discovery showing its motion relative to background stars. Photographs courtesy of Scott S. Sheppard.
    Breaking News
    October 16, 2025

    Fast-moving asteroid found in Sun’s glare

    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Extensive reservoir construction has fragmented more than 70% of the world's rivers, significantly impacting river connectivity and carbon cycling. However, the response of riverine dissolved organic matter (DOM) to reservoir influence and its potential downstream effects remains unclear. In this study, we employed multiple analytical techniques, including Fourier transform ion cyclotron resonance mass spectrometry, radiocarbon dating, and environmental factor analysis, to investigate the dynamic changes in DOM and its controlling factors under different hydrological management regimes in the LongTan Reservoir, the largest reservoir in the Pearl River, which is the second largest river in China by water discharge. Our results indicate that the molecular diversity of riverine DOM is reduced in the reservoir. Oxygen-rich and heteroatomic compounds, such as those containing nitrogen, sulfur, and phosphorus, are preferentially removed through enhanced photo- and biodegradation processes in the reservoir, particularly during the storage period. This leads to DOM that is enriched with oxygen-poor compounds and shows a biodegraded Delta 14C value downstream. This study highlights that the composition of riverine DOM is significantly altered by the reservoir, but these effects could potentially be mitigated by optimizing the outlet location.
View Full Publication open_in_new
Abstract
Planets between the sizes of Earth and Neptune are the most common in the Galaxy, bridging the gap between the terrestrial and giant planets in our solar system. Now that we are firmly in the era of JWST, we can begin to measure, in more detail, the atmospheres of these ubiquitous planets to better understand their evolutionary trajectories. The two planets in the TOI-836 system are ideal candidates for such a study, as they fall on either side of the radius valley, allowing for direct comparisons of the present-day atmospheres of planets that formed in the same environment but had different ultimate end states. We present results from the JWST NIRSpec G395H transit observation of the larger and outer of the planets in this system, TOI-836c (2.587 R-circle plus, 9.6 M-circle plus, T-eq similar to 665 K). While we measure average 30-pixel binned precisions of similar to 24 ppm for NRS1 and similar to 43 ppm for NRS2 per spectral bin, we do find residual correlated noise in the data, which we attempt to correct using the JWST Engineering Database. We find a featureless transmission spectrum for this sub-Neptune planet and are able to rule out atmospheric metallicities <175x solar in the absence of aerosols at less than or similar to 1 mbar. We leverage microphysical models to determine that aerosols at such low pressures are physically plausible. The results presented herein represent the first observation from the COMPASS (Compositions of Mini-Planet Atmospheres for Statistical Study) JWST program, which also includes TOI-836b and will ultimately compare the presence and compositions of atmospheres for 12 super-Earths/sub-Neptunes.
View Full Publication open_in_new
Abstract
Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of protoplanetary disks in the millimeter continuum have shown a variety of radial gaps, cavities, and spiral features. These substructures may be signposts for ongoing planet formation, and therefore these systems are promising targets for direct imaging planet searches in the near-infrared. To this end, we present results from a deep imaging survey in the L ' band (3.8 mu m) with the Keck/NIRC2 vortex coronagraph to search for young planets in 43 disks with resolved features in the millimeter continuum or evidence for gaps/central cavities from their spectral energy distributions. Although we do not detect any new point sources, using the vortex coronagraph allows for high sensitivity to faint sources at small angular separations (down to similar to 0.'' 1), allowing us to place strong upper limits on the masses of potential gas giant planets. We compare our mass sensitivities to the masses of planets derived using ALMA observations, and while we are sensitive to similar to 1 M Jup planets in the gaps in some of our systems, we are generally not sensitive to planets of the masses expected from the ALMA observations. In addition to placing upper limits on the masses of gas giant planets that could be interacting with the dust in the disks to form the observed millimeter substructures, we are also able to map the micron-sized dust as seen in scattered light for 8 of these systems. Our large sample of systems also allows us to investigate limits on planetary accretion rates and disk viscosities.
View Full Publication open_in_new
Abstract
Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions. However, after shock loading to a Hugoniot state, a clear description of the post-shock thermal state and its impacts on materials is still lacking. We used diffraction patterns from 100-fs x-ray pulses to investigate the temperature evolution of laser-shocked Al-Zr metal film composites at time delays ranging from 5 to 75 ns driven by a 120-ps short-pulse laser. We found significant heating of both Al and Zr after shock release, which can be attributed to heat generated by inelastic deformation. A conventional hydrodynamic model that employs (i) typical descriptions of Al and Zr mechanical strength and (ii) elevated strength responses (which might be attributed to an unknown strain rate dependence) did not fully account for the measured temperature increase, which suggests that other strength-related mechanisms (such as fine-scale void growth) could play an important role in thermal responses under shock wave loading/unloading cycles. Our results suggest that a significant portion of the total shock energy delivered by lasers becomes heat due to defect-facilitated plastic work, leaving less converted to kinetic energy. This heating effect may be common in laser-shocked experiments but has not been well acknowledged. High post-shock temperatures may induce phase transformation of materials during shock release. Another implication for the study is the preservability of magnetic records from planetary surfaces that have a shock history from frequent impact events.
View Full Publication open_in_new
Abstract
Hydrogen will play a key role in decarbonizing economies. Here, we quantify the costs and environmental impacts of possible large-scale hydrogen economies, using four prospective hydrogen demand scenarios for 2050 ranging from 111-614 megatonne H2 year-1. Our findings confirm that renewable (solar photovoltaic and wind) electrolytic hydrogen production generates at least 50-90% fewer greenhouse gas emissions than fossil-fuel-based counterparts without carbon capture and storage. However, electrolytic hydrogen production could still result in considerable environmental burdens, which requires reassessing the concept of green hydrogen. Our global analysis highlights a few salient points: (i) a mismatch between economical hydrogen production and hydrogen demand across continents seems likely; (ii) region-specific limitations are inevitable since possibly more than 60% of large hydrogen production potentials are concentrated in water-scarce regions; and (iii) upscaling electrolytic hydrogen production could be limited by renewable power generation and natural resource potentials.
View Full Publication open_in_new
Abstract
This second paper presents an in-depth analysis of the composition of the planetary material that has been accreted on to seven white dwarfs with circumstellar dust and gas emission discs with abundances reported in Rogers et al. The white dwarfs are accreting planetary bodies with a wide range of oxygen, carbon, and sulphur volatile contents, including one white dwarf that shows the most enhanced sulphur abundance seen to date. Three white dwarfs show tentative evidence (2-3 sigma) of accreting oxygen-rich material, potentially from water-rich bodies, whilst two others are accreting dry, rocky material. One white dwarf is accreting a mantle-rich fragment of a larger differentiated body, whilst two white dwarfs show an enhancement in their iron abundance and could be accreting core-rich fragments. Whilst most planetary material accreted by white dwarfs display chondritic or bulk Earth-like compositions, these observations demonstrate that core-mantle differentiation, disruptive collisions, and the accretion of core-mantle differentiated material are important. Less than 1 per cent of polluted white dwarfs host both observable circumstellar gas and dust. It is unknown whether these systems are experiencing an early phase in the disruption and accretion of planetary bodies, or alternatively if they are accreting larger planetary bodies. From this work there is no substantial evidence for significant differences in the accreted refractory abundance ratios for those white dwarfs with or without circumstellar gas, but there is tentative evidence for those with circumstellar gas discs to be accreting more water rich material which may suggest that volatiles accrete earlier in a gas-rich phase.
View Full Publication open_in_new
Conel Alexander
August 16, 2024
Awards

Carnegie Science dominates the Meteoritical Society awards

Veronica Duran poses on stage with her 20K check for the Mayor's Opportunity Scholarship
August 16, 2024
Awards

Empowering the next generation: CASE alumna receives prestigious $20,000 scholarship

Andrea Headshot
August 16, 2024
Organizational News

Isotope geochemist Andrea Giuliani joins Carnegie Science as new Staff Scientist

Pagination

  • Previous page chevron_left
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025