Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Mars 2020/Mars Sample Return (MSR) Sample Depot Science Community Workshop was held on September 28 and 30, 2022, to assess the Scientifically-Return Worthy (SRW) value of the full collection of samples acquired by the rover Perseverance at Jezero Crater, and of a proposed subset of samples to be left as a First Depot at a location within Jezero Crater called Three Forks. The primary outcome of the workshop was that the community is in consensus on the following statement: The proposed set of ten sample tubes that includes seven rock samples, one regolith sample, one atmospheric sample, and one witness tube constitutes a SRW collection that: (1) represents the diversity of the explored region around the landing site, (2) covers partially or fully, in a balanced way, all of the International MSR Objectives and Samples Team scientific objectives that are applicable to Jezero Crater, and (3) the analyses of samples in this First Depot on Earth would be of fundamental importance, providing a substantial improvement in our understanding of Mars. At the conclusion of the meeting, there was overall community support for forming the First Depot as described at the workshop and placing it at the Three Forks site. The community also recognized that the diversity of the Rover Cache (the sample collection that remains on the rover after placing the First Depot) will significantly improve with the samples that are planned to be obtained in the future by the Perseverance rover and that the Rover Cache is the primary target for MSR to return to Earth.
open_in_new
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
open_in_new
Abstract
Agriculture accounts for 12% of global annual greenhouse gas (GHG) emissions (7.1 Gt CO2 equivalent), primarily through non-CO2 emissions, namely methane (54%), nitrous oxide (28%), and carbon dioxide (18%). Thus, agriculture contributes significantly to climate change and is significantly impacted by its consequences. Here, we present a review of technologies and innovations for reducing GHG emissions in agriculture. These include decarbonizing on-farm energy use, adopting nitrogen fertilizers management technologies, alternative rice cultivation methods, and feeding and breeding technologies for reducing enteric methane. Combined, all these measures can reduce agricultural GHG emissions by up to 45%. However, residual emissions of 3.8 Gt CO2 equivalent per year will require offsets from carbon dioxide removal technologies to make agriculture net-zero. Bioenergy with carbon capture and storage and enhanced rock weathering are particularly promising techniques, as they can be implemented within agriculture and result in permanent carbon sequestration. While net-zero technologies are technically available, they come with a price premium over the status quo and have limited adoption. Further research and development are needed to make such technologies more affordable and scalable and understand their synergies and wider socio-environmental impacts. With support and incentives, agriculture can transition from a significant emitter to a carbon sink. This study may serve as a blueprint to identify areas where further research and investments are needed to support and accelerate a transition to net-zero emissions agriculture.
open_in_new
Abstract
We present pre- and postexplosion observations of the Type II-P supernova (SN II-P) 2019mhm located in NGC 6753. Based on optical spectroscopy and photometry, we show that SN 2019mhm exhibits broad lines of hydrogen with a velocity of -8500 +/- 200 km s(-1) and a 111 +/- 2 day extended plateau in its luminosity, typical of the Type II-P subclass. We also fit its late-time bolometric light curve and infer that it initially produced a Ni-56 mass of 1.3 x 10(-2) +/- 5.5 x 10(-4) M (circle dot). Using imaging from the Wide Field Planetary Camera 2 on the Hubble Space Telescope obtained 19 yr before explosion, we aligned to a postexplosion Wide Field Camera 3 image and demonstrate that there is no detected counterpart to the SN to a limit of >24.53 mag in F814W, corresponding to an absolute magnitude limit of M (F814W) < -7.7 mag. Comparing to massive-star evolutionary tracks, we determine that the progenitor star had a maximum zero-age main-sequence mass M (circle dot), consistent with other SN II-P progenitor stars. SN 2019mhm can be added to the growing population of SNe II-P with both direct constraints on the brightness of their progenitor stars and well-observed SN properties.
open_in_new
Abstract
We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as "star formation laws," aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the Physics at High Angular Resolution in Nearby Galaxies (PHANGS) survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H-2 conversion factors. The star formation laws we examine show 0.3-0.4 dex of intrinsic scatter, among which the molecular Kennicutt-Schmidt relation shows a similar to 10% larger scatter than the other three. The slope of this relation ranges beta approximate to 0.9-1.2, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes (beta approximate to 0.6-1.0), suggesting that the star formation efficiency per orbital time, the star formation efficiency per free fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10%-15% in the star formation law slopes and 0.15-0.25 dex in their normalization, while the CO-to-H-2 conversion factors can additionally produce uncertainties of 20%-25% for the slope and 0.10-0.20 dex for the normalization.
open_in_new
NG4321 is shown here as an ALMA (orange/red) composite with Hubble Space Telescope (HST) data
June 15, 2023
Campus News

Dive Into the Mystery of Dark Matter at the Neighborhood Lecture Honoring Vera Rubin

Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSC) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cells state was shaped by the need to resist transposon activity over evolutionary time scales.
open_in_new
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
open_in_new
Abstract
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4gamma, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4gamma is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4gamma, but not the closely related and apparently ancestral SLC4beta, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4gamma are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4gamma mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4gamma for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.
open_in_new
Abstract
We investigated the stability of polymeric CO2 over a wide range of pressures, temperatures, and chemical environments. We find that the I (4) over bar 2d polymeric structure, consisting of a three-dimensional network of corner sharing CO4 tetrahedra, forms at 40-140 GPa and from a CO-N-2 mixture at 39 GPa. An exceptional stability field of 0-286 GPa and 100-2500 K is documented for this structure, making it a viable candidate for planetary interiors. The stability of the tetrahedral polymeric motif of CO2-V is a consequence of the rigidity of sp(3) hybridized orbitals of carbon in a closed-packed oxygen sublattice.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 201
  • Page 202
  • Page 203
  • Page 204
  • Current page 205
  • Page 206
  • Page 207
  • Page 208
  • Page 209
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025