Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
With the discovery of bona fide extraterrestrial materials in the Stardust Interstellar Dust Collector, NASA now has a fundamentally new returned sample collection, after the Apollo, Antarctic meteorite, Cosmic Dust, Genesis, Stardust Cometary, Hayabusa, and Exposed Space Hardware samples. Here, and in companion papers in this volume, we present the results from the Preliminary Examination of this collection, the Stardust Interstellar Preliminary Examination (ISPE). We found extraterrestrial materials in two tracks in aerogel whose trajectories and morphology are consistent with an origin in the interstellar dust stream, and in residues in four impacts in the aluminum foil collectors. While the preponderance of evidence, described in detail in companion papers in this volume, points toward an interstellar origin for some of these particles, alternative origins have not yet been eliminated, and definitive tests through isotopic analyses were not allowed under the terms of the ISPE. In this summary, we answer the central questions of the ISPE: How many tracks in the collector are consistent in their morphology and trajectory with interstellar particles? How many of these potential tracks are consistent with real interstellar particles, based on chemical analysis? Conversely, what fraction of candidates are consistent with either a secondary or interplanetary origin? What is the mass distribution of these particles, and what is their state? Are they particulate or diffuse? Is there any crystalline material? How many detectable impact craters (> 100 nm) are there in the foils, and what is their size distribution? How many of these craters have analyzable residue that is consistent with extraterrestrial material? And finally, can craters from secondaries be recognized through crater morphology (e.g., ellipticity)?
open_in_new
Abstract
We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.
open_in_new
Abstract
Using synchrotron-based X-ray diffraction measurements, we identified crystalline material in two particles of extraterrestrial origin extracted from the Stardust Interstellar Dust Collector. The first particle, I1047,1,34 (Hylabrook), consisted of a mosaiced olivine grain approximately 1 mu m in size with internal strain fields up to 0.3%. The unit cell dimensions were a - 4.85 +/- 0.08 angstrom, b - 10.34 +/- 0.16 angstrom, c - 6.08 +/- 0.13 angstrom (2 sigma). The second particle, I1043,1,30 (Orion), contained an olivine grain approximate to 2 mu m in length and > 500 nm in width. It was polycrystalline with both mosaiced domains varying over approximate to 20 degrees and additional unoriented domains, and contained internal strain fields < 1%. The unit cell dimensions of the olivine were a = 4.76 +/- 0.05 angstrom, b = 10.23 +/- 0.10 angstrom, c = 5.99 +/- 0.06 angstrom (2 sigma), which limited the olivine to a forsteritic composition [Fo(65) (2 sigma). Orion also contained abundant spinel nanocrystals of unknown composition, but unit cell dimension a = 8.06 +/- 0.08 angstrom (2 sigma). Two additional crystalline phases were present and remained unidentified. An amorphous component appeared to be present in both these particles based on STXM and XRF results reported elsewhere.
open_in_new
Abstract
The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 <= Z <= 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.
open_in_new
Abstract
Under the auspices of the Stardust Interstellar Preliminary Examination, picokeystones extracted from the Stardust Interstellar Dust Collector were examined with synchrotron Fourier transform infrared (FTIR) microscopy to establish whether they contained extraterrestrial organic material. The picokeystones were found to be contaminated with varying concentrations and speciation of organics in the native aerogel, which hindered the search for organics in the interstellar dust candidates. Furthermore, examination of the picokeystones prior to and post X-ray microprobe analyses yielded evidence of beam damage in the form of organic deposition or modification, particularly with hard X-ray synchrotron X-ray fluorescence. From these results, it is clear that considerable care must be taken to interpret any organics that might be in interstellar dust particles. For the interstellar candidates examined thus far, however, there is no clear evidence of extraterrestrial organics associated with the track and/or terminal particles. However, we detected organic matter associated with the terminal particle in Track 37, likely a secondary impact from the Al-deck of the sample return capsule, demonstrating the ability of synchrotron FTIR to detect organic matter in small particles within picokeystones from the Stardust interstellar dust collector.
open_in_new
Abstract
The Stardust Interstellar Preliminary Examination team analyzed thirteen Al foils from the NASA Stardust interstellar collector tray in order to locate candidate interstellar dust (ISD) grain impacts. Scanning electron microscope (SEM) images reveal that the foils possess abundant impact crater and crater-like features. Elemental analyses of the crater features, with Auger electron spectroscopy, SEM-based energy dispersive X-ray (EDX) spectroscopy, and scanning transmission electron microscope-based EDX spectroscopy, demonstrate that the majority are either the result of impacting debris fragments from the spacecraft solar panels, or intrinsic defects in the foil. The elemental analyses also reveal that four craters contain residues of a definite extraterrestrial origin, either as interplanetary dust particles or ISD particles. These four craters are designated level 2 interstellar candidates, based on the crater shapes indicative of hypervelocity impacts and the residue compositions inconsistent with spacecraft debris.
open_in_new
Abstract
We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.
open_in_new
Abstract
Here, we report the identification of 69 tracks in approximately 250 cm(2) of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust@home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 x 10(7) searches on approximately 10(6) fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 mu m in diameter was >0.6, and was >0.75 for tracks >3 mu m in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel.
open_in_new
Abstract
Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks-that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.
open_in_new
Abstract
Hard X-ray, quantitative, fluorescence elemental imaging was performed on the ID22NI nanoprobe and ID22 microprobe beam lines of the European Synchrotron Research facility (ESRF) in Grenoble, France, on eight interstellar candidate impact features in the framework of the NASA Stardust Interstellar Preliminary Examination (ISPE). Three features were unambiguous tracks, and the other five were identified as possible, but not definite, impact features. Overall, we produced an absolute quantification of elemental abundances in the 15 <= Z <= 30 range by means of corrections of the beam parameters, reference materials, and fundamental atomic parameters. Seven features were ruled out as interstellar dust candidates (ISDC) based on compositional arguments. One of the three tracks, I1043,1,30,0,0, contained, at the time of our analysis, two physically separated, micrometer-sized terminal particles, the most promising ISDCs, Orion and Sirius. We found that the Sirius particle was a fairly homogenous Ni-bearing particle and contained about 33 fg of distributed high-Z elements (Z > 12). Orion was a highly heterogeneous Fe-bearing particle and contained about 59 fg of heavy elements located in hundred nanometer phases, forming an irregular mantle that surrounded a low-Z core. X-ray diffraction (XRD) measurements revealed Sirius to be amorphous, whereas Orion contained partially crystalline material (Gainsforth et al. 2014). Within the mantle, one grain was relatively Fe-Ni-Mn-rich; other zones were relatively Mn-Cr-Ti-rich and may correspond to different spinel populations. For absolute quantification purposes, Orion was assigned to a mineralogical assemblage of forsterite, spinel, and an unknown Fe-bearing phase, while Sirius was most likely composed of an amorphous Mg-bearing material with minor Ni and Fe. Owing to its nearly chondritic abundances of the nonvolatile elements Ca, Ti, Co, and Ni with respect to Fe, in combination with the presence of olivine and spinel as inferred from XRD measurements, Orion had a high probability of being extraterrestrial in origin.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 203
  • Page 204
  • Page 205
  • Page 206
  • Current page 207
  • Page 208
  • Page 209
  • Page 210
  • Page 211
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025