Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
View Full Publication open_in_new
Abstract
Agriculture accounts for 12% of global annual greenhouse gas (GHG) emissions (7.1 Gt CO2 equivalent), primarily through non-CO2 emissions, namely methane (54%), nitrous oxide (28%), and carbon dioxide (18%). Thus, agriculture contributes significantly to climate change and is significantly impacted by its consequences. Here, we present a review of technologies and innovations for reducing GHG emissions in agriculture. These include decarbonizing on-farm energy use, adopting nitrogen fertilizers management technologies, alternative rice cultivation methods, and feeding and breeding technologies for reducing enteric methane. Combined, all these measures can reduce agricultural GHG emissions by up to 45%. However, residual emissions of 3.8 Gt CO2 equivalent per year will require offsets from carbon dioxide removal technologies to make agriculture net-zero. Bioenergy with carbon capture and storage and enhanced rock weathering are particularly promising techniques, as they can be implemented within agriculture and result in permanent carbon sequestration. While net-zero technologies are technically available, they come with a price premium over the status quo and have limited adoption. Further research and development are needed to make such technologies more affordable and scalable and understand their synergies and wider socio-environmental impacts. With support and incentives, agriculture can transition from a significant emitter to a carbon sink. This study may serve as a blueprint to identify areas where further research and investments are needed to support and accelerate a transition to net-zero emissions agriculture.
View Full Publication open_in_new
Abstract
We present pre- and postexplosion observations of the Type II-P supernova (SN II-P) 2019mhm located in NGC 6753. Based on optical spectroscopy and photometry, we show that SN 2019mhm exhibits broad lines of hydrogen with a velocity of -8500 +/- 200 km s(-1) and a 111 +/- 2 day extended plateau in its luminosity, typical of the Type II-P subclass. We also fit its late-time bolometric light curve and infer that it initially produced a Ni-56 mass of 1.3 x 10(-2) +/- 5.5 x 10(-4) M (circle dot). Using imaging from the Wide Field Planetary Camera 2 on the Hubble Space Telescope obtained 19 yr before explosion, we aligned to a postexplosion Wide Field Camera 3 image and demonstrate that there is no detected counterpart to the SN to a limit of >24.53 mag in F814W, corresponding to an absolute magnitude limit of M (F814W) < -7.7 mag. Comparing to massive-star evolutionary tracks, we determine that the progenitor star had a maximum zero-age main-sequence mass M (circle dot), consistent with other SN II-P progenitor stars. SN 2019mhm can be added to the growing population of SNe II-P with both direct constraints on the brightness of their progenitor stars and well-observed SN properties.
View Full Publication open_in_new
Abstract
We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as "star formation laws," aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the Physics at High Angular Resolution in Nearby Galaxies (PHANGS) survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H-2 conversion factors. The star formation laws we examine show 0.3-0.4 dex of intrinsic scatter, among which the molecular Kennicutt-Schmidt relation shows a similar to 10% larger scatter than the other three. The slope of this relation ranges beta approximate to 0.9-1.2, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes (beta approximate to 0.6-1.0), suggesting that the star formation efficiency per orbital time, the star formation efficiency per free fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10%-15% in the star formation law slopes and 0.15-0.25 dex in their normalization, while the CO-to-H-2 conversion factors can additionally produce uncertainties of 20%-25% for the slope and 0.10-0.20 dex for the normalization.
View Full Publication open_in_new
NG4321 is shown here as an ALMA (orange/red) composite with Hubble Space Telescope (HST) data
June 15, 2023
Campus News

Dive Into the Mystery of Dark Matter at the Neighborhood Lecture Honoring Vera Rubin

Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSC) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cells state was shaped by the need to resist transposon activity over evolutionary time scales.
View Full Publication open_in_new
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
View Full Publication open_in_new
Abstract
Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4gamma, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4gamma is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4gamma, but not the closely related and apparently ancestral SLC4beta, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4gamma are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4gamma mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4gamma for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.
View Full Publication open_in_new
Abstract
We investigated the stability of polymeric CO2 over a wide range of pressures, temperatures, and chemical environments. We find that the I (4) over bar 2d polymeric structure, consisting of a three-dimensional network of corner sharing CO4 tetrahedra, forms at 40-140 GPa and from a CO-N-2 mixture at 39 GPa. An exceptional stability field of 0-286 GPa and 100-2500 K is documented for this structure, making it a viable candidate for planetary interiors. The stability of the tetrahedral polymeric motif of CO2-V is a consequence of the rigidity of sp(3) hybridized orbitals of carbon in a closed-packed oxygen sublattice.
View Full Publication open_in_new
Abstract
The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutri-ent-rich crust at the dawn of the Phanerozoic.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 200
  • Page 201
  • Page 202
  • Page 203
  • Current page 204
  • Page 205
  • Page 206
  • Page 207
  • Page 208
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025