Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Carnegie Science's Broad Branch Road campus in the fall with brilliant leaves
    Public Program

    Inaugural Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

    Scientist Thomas Westerhold, a co-organizer of TIMES, speaks to attendees
    Breaking News
    August 20, 2025

    Time-Integrated Matrix for Earth Sciences (TIMES) Kicks Off With Workshop at Carnegie's EPL

    An artist's conception of gold hydride synthesiss courtesy of Greg Stewart/ SLAC National Accelerator Laboratory
    Breaking News
    August 12, 2025

    High-pressure gold hydride synthesized

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Recent studies of massive binaries with putative black hole companions have uncovered a phase of binary evolution that has not been observed before, featuring a bloated stripped star that very recently ceased transferring mass to a main-sequence companion. In this study, we focus on the candidate system VFTS 291, a binary with an orbital period of 108 d and a high semi-amplitude velocity ( K 1 = 93.7 +/- 0.2 km s -1). Through our analysis of the disentangled spectra of the two components, together with dynamical and evolutionary arguments, we identify a narrow-lined star of similar to 1.5-2.5 M-circle dot dominating the spectrum, and an early B-type main-sequence companion of 13.2 +/- 1.5 M-circle dot. The low mass of the narrow-lined star, and the high mass ratio, suggest that VFTS 291 is a post-mass-transfer system, with the narrow-lined star being bloated and stripped of its hydrogen-rich envelope, sharing many similarities with other recently disco v ered stripped stars. Our finding is supported by our detailed binary evolution models, which indicate that the system can be well explained by an initial configuration consisting of an 8.1 M-circle dot primary with an 8 M-circle dot companion in a 7 d orbital period. While some open questions remain, particularly concerning the surface helium enrichment of the stripped star and the rotational velocity of the companion, we expect that high-resolution spectroscopy may help reconcile our estimates with theory. Our study highlights the importance of multi-epoch spectroscopic surv e ys to identify and characterize binary interaction products, and provides important insights into the evolution of massive binary stars.
View Full Publication open_in_new
Abstract
Stellar kinematics and metallicity are key to exploring formation scenarios for galactic disks and halos. In this work, we characterized the relationship between kinematics and photometric metallicity along the line of sight to M31's disk. We combined optical Hubble Space Telescope/Advanced Camera for Surveys photometry, from the Panchromatic Hubble Andromeda Treasury survey, with Keck/DEIMOS spectra, from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. The resulting sample of 3512 individual red giant branch stars spans 4-19 projected kpc, making it a useful probe of both the disk and inner halo. We separated these stars into disk and halo populations, by modeling the line-of-sight velocity distributions as a function of position across the disk region, where similar to 73% stars have a high likelihood of belonging to the disk and similar to 14% to the halo. Although stellar halos are typically thought to be metal-poor, the kinematically identified halo contains a significant population of stars (similar to 29%) with disk-like metallicity ([Fe/H](phot) similar to -0.10). This metal-rich halo population lags the gaseous disk to a similar extent as the rest of the halo, indicating that it does not correspond to a canonical thick disk. Its properties are inconsistent with those of tidal debris originating from the Giant Stellar Stream merger event. Moreover, the halo is chemically distinct from the phase-mixed component previously identified along the minor axis (i.e., away from the disk), implying contributions from different formation channels. These metal-rich halo stars provide direct chemodynamical evidence in favor of the previously suggested "kicked-up" disk population in M31's inner stellar halo.
View Full Publication open_in_new
Abstract
We examine the azimuthal variations in gas-phase metallicity profiles in simulated Milky Way-mass disc galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulation suite, which includes a sub-grid turbulent metal mixing model. We produce spatially resolved maps of the discs at z approximate to 0 with pixel sizes ranging from 250 to 750 pc, analogous to modern integral field unit galaxy surveys, mapping the gas-phase metallicities in both the cold and dense gas and the ionized gas correlated with H ii regions. We report that the spiral arms alternate in a pattern of metal rich and metal poor relative to the median metallicity of the order of less than or similar to 0.1 dex, appearing generally in this sample of flocculent spirals. The pattern persists even in a simulation with different strengths of metal mixing, indicating that the pattern emerges from physics above the sub-grid scale. Local enrichment does not appear to be the dominant source of the azimuthal metallicity variations at z approximate to 0: there is no correlation with local star formation on these spatial scales. Rather, the arms are moving radially inwards and outwards relative to each other, carrying their local metallicity gradients with them radially before mixing into the larger-scale interstellar medium. We propose that the arms act as freeways channeling relatively metal poor gas radially inwards, and relatively enriched gas radially outwards.
View Full Publication open_in_new
Abstract
We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution (R & SIM; 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [& alpha;/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [& alpha;/Fe] for M31 halo stars, covering a range of 9-180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (R (proj) > 50 kpc) M31 stars with spectroscopic [Fe/H] and [& alpha;/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of -0.0084 & PLUSMN; 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [& alpha;/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 & PLUSMN; 0.0005) in [& alpha;/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]-[& alpha;/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy.
View Full Publication open_in_new
Abstract
The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope-measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [& alpha;/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of & SIM;10-40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy, & beta;, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at -2.2 and -1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.
View Full Publication open_in_new
Abstract
Ultra-light dark matter (ULDM) refers to a class of theories, including ultra-light axions, in which particles with mass m(psi) < 10(-20) eV comprise a significant fraction of the dark matter. A galactic scale de Broglie wavelength distinguishes these theories from cold dark matter (CDM), suppressing the overall abundance of structure on sub-galactic scales, and producing wave-like interference phenomena in the density profiles of haloes. With the aim of constraining the particle mass, we analyse the flux ratios in a sample of 11 quadruple-image strong gravitational lenses. We account for the suppression of the halo mass function and concentration-mass relation predicted by ULDM theories, and the wave-like fluctuations in the host halo density profile, calibrating the model for the wave interference against numerical simulations of galactic-scale haloes. We show that the granular structure of halo density profiles, in particular, the amplitude of the fluctuations, significantly impacts image flux ratios, and therefore inferences on the particle mass derived from these data. We infer relative likelihoods of CDM to ULDM of 8:1, 7:1, 6:1, and 4:1 for particle masses log(10) (m psi/eV) is an element of [-22.5,-22.25], [-22.25,-22.0],[-22.0,-21.75], [-21.75,-21.5], respectively. Repeating the analysis and omitting fluctuations associated with the wave interference effects, we obtain relative likelihoods of CDM to ULDM with a particle mass in the same ranges of 98:1, 48:1, 26:1, and 18:1, highlighting the significant perturbation to image flux ratios associated with the fluctuations. Nevertheless, our results disfavour the lightest particle masses with m(psi) < 10(-21.5) eV, adding to mounting pressure on ultra-light axions as a viable dark matter candidate.
View Full Publication open_in_new
Mike Wong and colleague Anirudh Prabhu discuss how to tweak the presentation of a network of Earth's atmospheric chemistry in their shared office on the Broad Branch Road campus.

 

Mike Wong and colleague Anirudh Prabhu discuss how to tweak the presentation of a network of Earth's atmospheric chemistry in their shared office on the Broad Branch Road campus. Photo courtesy Carnegie Institution for Science/Katy Cain

November 17, 2023
Awards

Carnegie’s Anirudh Prabhu recognized for early career excellence

A flooded corn field
November 17, 2023

Carnegie’s Jeff Dukes contributes to new National Climate Assessment

Criniti

Giacomo Criniti

Carnegie Postdoctoral Fellow

Abstract
During photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin-Benson-Bassham cycle and the formation of biomass building block in the so-called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast-to-mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 164
  • Page 165
  • Page 166
  • Page 167
  • Current page 168
  • Page 169
  • Page 170
  • Page 171
  • Page 172
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025