Abstract
The origin, evolution, and cycling of volatiles on the Moon are established by processes such as the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface eruptions, and lunar surface gardening events. These processes typically induce mass-dependent stable isotope fractionations. Mass-independent fractionation of stable isotopes has yet to be demonstrated during events that release large volumes of gas on the moon and establish transient lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange and black glasses confirm a role for magmatic sulfur loss during eruption. The Delta S-33 value of the orange glasses is homogenous (Delta S-33 = -0.029 parts per thousand +/- 0.004 parts per thousand, 2SE) and different from the isotopic composition of lunar basalts (Delta S-33 = 0.002 parts per thousand +/- 0.004 parts per thousand, 2SE). We link the negative Delta S-33 composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature of this anomalous sulfur source remains unknown and is either linked to (a) an impactor that delivered anomalous sulfur after late accretion, (b) sulfur that was photochemically processed early during lunar evolution and was transported to the lunar mantle, or (c) a primitive sulfur component that survived mantle mixing. The examined black glass preserves a mass-dependent Delta S-33 composition (-0.008 parts per thousand +/- 0.006 parts per thousand, 2SE). The orange and black glasses are considered genetically related, but the discrepancy in Delta S-33 composition among the two samples calls their relationship into question.