Zhiyong Wang was appointed acting director of Department of Plant Biology in 2018.

Wang’s research aims to understand how plant growth is controlled by environmental and endogenous signals. Being sessile, plants respond environmental changes by altering their growth behavior. As such, plants display high developmental plasticity and their growth is highly sensitive to environmental conditions. Plants have evolved many hormones that function as growth regulators, and growth is also responsive to the availability of nutrients and energy (photosynthates).

To understand how plant cells perceive and transduce various regulatory signals, and how combinations of complex information are processed into growth decisions, such as shoot cell elongation and root growth, by the cellular circuitry, the Wang lab uses a wide range of cutting-edge technologies in proteomics and genomics, as well as traditional genetic and molecular approaches, and both model systems and crops.

The Wang lab has spent years dissecting the signaling pathway of one major class of plant hormones, brassinosteroids, making it one of the best-studied signal transduction pathways in plants. Brassinosteroids play important roles in a wide array of functions, including cell elongation, photomorphogenesis, and reproductive development, with major effects on plant size and biomass accumulation. Brassinosteroids also have impacts on the response to environmental stresses and resistance to pathogens.

In recent years, research by the Wang lab has uncovered a central growth-regulation network that integrates all major signals that control shoot cell elongation, including brassinosteroids, auxin, gibberellin, light, temperature, the circadian clock, sugar, and pathogen signals. Wang believes that this central growth network will be a major target for genetically engineering high-yield crops.

A major current effort of Wang lab is to map the protein networks using proteomic approaches. Both protein-protein interactions and posttranslational modifications are studies at large scale using mass spectrometry in combination with affinity enrichment, proximity labelling, crosslinking, and synthetic protein interactions. The aim is to establish complete protein and gene networks and to engineer the networks to achieve improved traits.

Wang received his B.S. in plant physiology from Lanzhou University, China, his M.S. from the Institute of Botany, Chinese Academy of Sciences, and his Ph. D. in molecular, cell and developmental biology at UCLA. For more see http://dpb.carnegiescience.edu/labs/wang-lab

Scientific Area: 

Explore Carnegie Science

Margaret McFall-Ngai
November 17, 2021

Washington, DC—Pioneering microbiome specialist Margaret McFall-Ngai has been named the inaugural director of Carnegie’s newly launched research division focused on life and environmental sciences, which will deploy an integrated, molecular-to-global approach to tackling the challenges of sustainability, resilience, and adaptation to a changing climate. McFall-Ngai will join the institution in January, 2022, from the University of Hawai‘i at Mānoa, where she is a professor at the Pacific Biosciences Research Center’s Kewalo Marine Laboratory and the center’s director emerita.

“Margaret’s exemplary research and groundbreaking vision are the

Rose rust on plant leaves. Image purchased from Shutterstock.
October 26, 2021

Palo Alto, CA—New work led by Carnegie’s Kangmei Zhao and Sue Rhee reveals a new mechanism by which plants are able to rapidly activate defenses against bacterial infections. This understanding could inspire efforts to improve crop yields and combat global hunger.

“Understanding how plants respond to stressful environments is critical for developing strategies to protect important food and biofuel crops from a changing climate,” Rhee explained. 

Published in eLife, new work from Zhao and Rhee, along with Carnegie’s Benjamin Jin and Stanford University’s Deze Kong and Christina Smolke, investigated how production of a plant defense

October 4, 2021

Palo Alto, CA—Carnegie’s Devaki Bhaya is part of a Rice University led team that was recently awarded $2.8 million from the National Science Foundation for a five-year project to define the social order of naturally occurring microbial communities.

Unlike the bacterial clones used in laboratory research, naturally occurring bacterial populations are havens of small-scale genetic diversity, making their relationships and evolutionary dynamics of great interest to the scientific community.

“From extremophiles living in deep sea vents to the beneficial bacteria living in the human gut or in association with plant roots, microbial communities are crucial to

September 24, 2021

Palo Alto, CA—Former Carnegie Staff Associate Martin Jonikas, now an Associate Professor of Molecular Biology at Princeton University, was named one of 33 new Howard Hughes Medical Institute (HHMI) Investigators. HHMI recognized Jonikas for his research on photosynthetic algae, which could revolutionize agriculture and biofuels by making crop plants better at converting carbon dioxide from the atmosphere into usable energy sources such as sugars.

Each member of the cohort will receive roughly $9 million over a seven-year term. They were selected for “diving deep into tough questions that span the landscape of biology and medicine.”

Photosynthesis is

No content in this section.

Revolutionary progress in understanding plant biology is being driven through advances in DNA sequencing technology. Carnegie plant scientists have played a key role in the sequencing and genome annotation efforts of the model plant Arabidopsis thaliana and the soil alga Chlamydomonas reinhardtii. Now that many genomes from algae to mosses and trees are publicly available, this information can be mined using bioinformatics to build models to understand gene function and ultimately for designing plants for a wide spectrum of applications.

 Carnegie researchers have pioneered a genome-wide gene association network Aranet that can assign functions

Ana Bonaca is Staff Member at Carnegie Observatories. Her specialty is stellar dynamics and her research aims to uncover the structure and evolution of our galaxy, the Milky Way, especially the dark matter halo that surrounds it. In her research, she uses space- and ground-based telescopes to measure the motions of stars, and constructs numerical experiments to discover how dark matter affected them.

She arrived in September 2021 from Harvard University where she held a prestigious Institute for Theory and Computation Fellowship. 

Bonaca studies how the uneven pull of our galaxy’s gravity affects objects called globular clusters—spheres made up of a million

Peter Gao's research interests include planetary atmospheres; exoplanet characterization; planet formation and evolution; atmosphere-surface-interior interactions; astrobiology; habitability; biosignatures; numerical modeling.

His arrival in September 2021 continued Carnegie's longstanding tradition excellence in exoplanet discovery and research, which is crucial as the field prepares for an onslaught of new data about exoplanetary atmospheres when the next generation of telescopes come online.

Gao has been a part of several exploratory teams that investigated sulfuric acid clouds on Venus, methane on Mars, and the atmospheric hazes of Pluto. He also

Anne Pommier's research is dedicated to understanding how terrestrial planets work, especially the role of silicate and metallic melts in planetary interiors, from the scale of volcanic magma reservoirs to core-scale and planetary-scale processes.

She joined Carnegie in July 2021 from U.C. San Diego’s Scripps Institution of Oceanography, where she investigated the evolution and structure of planetary interiors, including our own Earth and its Moon, as well as Mars, Mercury, and the moon Ganymede.

Pommier’s experimental petrology and mineral physics work are an excellent addition to Carnegie’s longstanding leadership in lab-based mimicry of the

Johanna Teske became the first new staff member to join Carnegie’s newly named Earth and Planets Laboratory (EPL) in Washington, D.C., on September 1, 2020. She has been a NASA Hubble Fellow at the Carnegie Observatories in Pasadena, CA, since 2018. From 2014 to 2017 she was the Carnegie Origins Postdoctoral Fellow—a joint position between Carnegie’s Department of Terrestrial Magnetism (now part of EPL) and the Carnegie Observatories.

Teske is interested in the diversity in exoplanet compositions and the origins of that diversity. She uses observations to estimate exoplanet interior and atmospheric compositions, and the chemical environments of their formation