Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
It is a major open question which physical processes stop gas accretion on to giant molecular clouds (GMCs) and limit the efficiency at which gas is converted into stars. While feedback from supernova explosions has been the popular feedback mechanism included in simulations of galaxy formation and evolution, 'early' feedback mechanisms such as stellar winds, photoionization, and radiation pressure are expected to play an important role in dispersing the gas after the onset of star formation. These feedback processes typically take place on small scales (similar to 10-100 pc) and their effects have therefore been difficult to constrain in environments other than the Milky Way. We apply a novel statistical method to similar to 1 arcsec resolution maps of CO and H a across a sample of nine nearby galaxies, to measure the time over which GMCs are dispersed by feedback from young, high-mass stars, as a function of the galactic environment. We find that GMCs are typically dispersed within similar to 3 Myr on average after the emergence of unembedded high-mass stars, with variations within galaxies associated with morphological features rather than radial trends. Comparison with analytical predictions demonstrates that, independently of the environment, early feedback mechanisms (particularly photoionization and stellar winds) play a crucial role in dispersing GMCs and limiting their star formation efficiency in nearby galaxies. Finally, we show that the efficiency at which the energy injected by these early feedback mechanisms couples with the parent GMC is relatively low (a few tens of per cent), such that the vast majority of momentum and energy emitted by the young stellar populations escapes the parent GMC.
View Full Publication open_in_new
Abstract
We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4< log(M/M-circle dot)< 11.0) nearby (D less than or similar to 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1 ' by 1 ' each) and a total of nearly 15 x 10(6) spectra, covering similar to 1.5 x 10(6) independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This 'cloud-scale' resolution allows detailed demographics and characterisations of H II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2-1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
View Full Publication open_in_new
Abstract
We show the results of a study using the spectral synthesis technique study for the full MaNGA sample showing their chemical enrichment history (ChEH) as well as the evolution of the stellar mass-metallicity relation (MZR) over cosmic time. We find that the more massive galaxies became enriched first and the lower-mass galaxies did so later, producing a change in the MZR that becomes shallower in time. Separating the sample into morphology and star-forming status bins, some particularly interesting results appear: The mass dependence of the MZR becomes less relevant for later morphological types, to the extent that it inverts for Sd/Irr galaxies, suggesting that morphology is at least as important a factor as mass in the chemical evolution. The MZR for the full sample shows a flattening at the high-mass end and another in the low-mass range, but the former only appears for retired galaxies, while the latter only appears for star-forming galaxies. We also find that the average metallicity gradient is currently negative for all mass bins, but for low-mass galaxies, it was inverted at some point in the past, before which all galaxies had a positive gradient. We also compare how diverse the ChEHs are in the different bins we considered, as well as what primarily drives the diversity: By how much galaxies become enriched, or how quickly they do so.
View Full Publication open_in_new
Abstract
We present a rich, multiwavelength, multiscale database built around the PHANGS-ALMA CO (2 - 1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and subgalactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale freefall time and turbulence crossing time are similar to 5-20 Myr, comparable to previous cloud lifetime estimates. The timescales for orbital motion, shearing, and cloud-cloud collisions are longer, similar to 100 Myr. The molecular gas depletion time is 1-3 Gyr and shows weak to no correlations with the other timescales in our data. We publish our measurements online, and expect them to have broad utility to future studies of molecular clouds and star formation.
View Full Publication open_in_new
Abstract
Aims. There exists some consensus that the stellar mass surface density (Sigma(star)) and molecular gas mass surface density (Sigma(mol)) are the main quantities responsible for locally setting the star formation rate. This regulation is inferred from locally resolved scaling relations between these two quantities and the star formation rate surface density (Sigma(SFR)), which have been extensively studied in a wide variety of works. However, the universality of these relations is debated. Here, we probe the interplay between these three quantities across different galactic environments at a spatial resolution of 150 pc.
View Full Publication open_in_new
Steve Shirey Gives Presentation to Postdocs
November 13, 2019
Campus News

You got a job interview! Now what?

Alycia Weinberger Workshop
December 17, 2019
Campus News

Tips for Good Talks & Job Talks in Particular

Negotiating your Startup
January 22, 2020
Campus News

Negotiating Your Startup

Academic Teaching Workshop
February 27, 2020
Campus News

Everything You Wanted to Know About Academic Teaching

Abstract
Bacteria are a globally sustainable source of fixed nitrogen, which is essential for life and crucial for modern agriculture. Many nitrogen-fixing bacteria are agriculturally important, including bacteria known as rhizobia that participate in growth-promoting symbioses with legume plants throughout the world. To be effective symbionts, rhizobia must overcome multiple environmental challenges: from surviving in the soil, to transitioning to the plant environment, to maintaining high metabolic activity within root nodules. Climate change threatens to exacerbate these challenges, especially through fluctuations in soil water potential. Understanding how rhizobia cope with environmental stress is crucial for maintaining agricultural yields in the coming century. The bacterial outer membrane is the first line of defence against physical and chemical environmental stresses, and lipids play a crucial role in determining the robustness of the outer membrane. In particular, structural remodelling of lipid A and sterol-analogues known as hopanoids are instrumental in stress acclimation. Here, we discuss how the unique outer membrane lipid composition of rhizobia may underpin their resilience in the face of increasing osmotic stress expected due to climate change, illustrating the importance of studying microbial membranes and highlighting potential avenues towards more sustainable soil additives.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 884
  • Page 885
  • Page 886
  • Page 887
  • Current page 888
  • Page 889
  • Page 890
  • Page 891
  • Page 892
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025