Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Diana Roman and Andrea Goltz prepare a "trash-cano" at the Earth & Planets Laboratory Open House.
    Breaking News
    November 03, 2025

    Hundreds of Science Enthusiasts Attend Inaugural EPL Open House

    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Postdoc Double Feature - Shubham and Sierra
    Breaking News
    October 28, 2025

    Postdocs explore the origins of worlds in Neighborhood Lecture double feature

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Extensive archival Hubble Space Telescope, Spitzer Space Telescope, and Large Binocular Telescope imaging of the recent intermediate-luminosity transient, AT 2019krl in M74, reveal a bright optical and mid-infrared progenitor star. While the optical peak of the event was missed, a peak was detected in the infrared with an absolute magnitude of M (4.5 mu m) = -18.4 mag, leading us to infer a visual-wavelength peak absolute magnitude of -13.5 to -14.5. The pre-discovery light curve indicated no outbursts over the previous 16 yr. The colors, magnitudes, and inferred temperatures of the progenitor best match a 13-14 M (circle dot) yellow or blue supergiant (BSG) if only foreground extinction is taken into account, or a hotter and more massive star if any additional local extinction is included. A pre-eruption spectrum of the star reveals strong H alpha and [N ii] emission with wings extending to +/- 2000 km s(-1). The post-eruption spectrum is fairly flat and featureless with only H alpha, Na i D, [Ca ii], and the Ca ii triplet in emission. As in many previous intermediate-luminosity transients, AT 2019krl shows remarkable observational similarities to luminous blue variable (LBV) giant eruptions, SN 2008S-like events, and massive-star mergers. However, the information about the pre-eruption star favors either a relatively unobscured BSG or a more extinguished LBV with M > 20 M-circle dot likely viewed pole-on.
View Full Publication open_in_new
Abstract
We use an unprecedented sample of about 23 000 H II regions detected at an average physical resolution of 67 pc in the PHANGS-MUSE sample to study the extragalactic H II region H alpha luminosity function (LF). Our observations probe the star-forming disk of 19 nearby spiral galaxies with low inclination and located close to the star formation main sequence at z = 0. The mean LF slope, alpha, in our sample is = 1.73 with a sigma of 0.15. We find that alpha decreases with the galaxy's star formation rate surface density, Sigma(SFR), and argue that this is driven by an enhanced clustering of young stars at high gas surface densities. Looking at the H II regions within single galaxies, we find that no significant variations occur between the LF of the inner and outer part of the star-forming disk, whereas the LF in the spiral arm areas is shallower than in the inter-arm areas for six out of the 13 galaxies with clearly visible spiral arms. We attribute these variations to the spiral arms increasing the molecular clouds' arm-inter-arm mass contrast and find suggestive evidence that they are more evident for galaxies with stronger spiral arms. Furthermore, we find systematic variations in a between samples of H II regions with a high and low ionization parameter, q, and argue that they are driven by the aging of H II regions.
View Full Publication open_in_new
Abstract
We use integral field spectroscopy from the PHANGS-MUSE survey, which resolves the ionised interstellar medium structure at similar to 50 pc resolution in 19 nearby spiral galaxies, to study the origin of the diffuse ionised gas (DIG). We examine the physical conditions of the diffuse gas by first removing morphologically defined H II regions and then binning the low-surface-brightness areas to achieve significant detections of the key nebular lines in the DIG. A simple model for the leakage and propagation of ionising radiation from H II regions is able to reproduce the observed distribution of H alpha in the DIG. This model infers a typical mean free path for the ionising radiation of 1.9 kpc for photons propagating within the disc plane. Leaking radiation from H II regions also explains the observed decrease in line ratios of low-ionisation species ([S II]/H alpha, [N II]/H alpha, and [O I]/H alpha) with increasing H alpha surface brightness (sigma(H alpha)). Emission from hot low-mass evolved stars, however, is required to explain: (1) the enhanced low-ionisation line ratios observed in the central regions of some of the galaxies in our sample; (2) the observed trends of a flat or decreasing [O III]/H beta with sigma(H alpha); and (3) the offset of some DIG regions from the typical locus of H II regions in the Baldwin-Phillips-Terlevich (BPT) diagram, extending into the area of low-ionisation (nuclear) emission-line regions (LI[N]ERs). Hot low-mass evolved stars make a small contribution to the energy budget of the DIG (2% of the galaxy-integrated H alpha emission), but their harder spectra make them fundamental contributors to [O III] emission. The DIG might result from a superposition of two components, an energetically dominant contribution from young stars and a more diffuse background of harder ionising photons from old stars. This unified framework bridges observations of the Milky Way DIG with LI(N)ER-like emission observed in nearby galaxy bulges.
View Full Publication open_in_new
Abstract
We provide new planetary nebula luminosity function (PNLF) distances to 19 nearby spiral galaxies that were observed with VLT/MUSE by the PHANGS collaboration. Emission line ratios are used to separate planetary nebulae (PNe) from other bright [O III] emitting sources like compact supernovae remnants (SNRs) or H II regions. While many studies have used narrowband imaging for this purpose, the detailed spectral line information provided by integral field unit (IFU) spectroscopy grants a more robust way of categorizing different [O III] emitters. We investigate the effects of SNR contamination on the PNI.F and find that we would fail to classify all objects correctly, when limited to the same data narrowband imaging provides. However, the few misclassified objects usually do not fall on the bright end of the luminosity function, and only in three cases does the distance change by more than 1 sigma. We find generally good agreement with literature values from other methods. Using metallicity constraints that have also been derived from the same IFU data, we revisit the PNLF zero-point calibration. Over a range of 8.34 < 12 + log (O/H) < 8.59, our sample is consistent with a constant zero-point and yields a value of M* = -4.542(-0.059)(+0.103) mag, within to of other literature values. MUSE pushes the limits of PNLF studies and makes galaxies beyond 20 Mpc accessible for this kind of analysis. This approach to the PNLF shows great promise for leveraging existing archival IFU data on nearby galaxies.
View Full Publication open_in_new
Abstract
Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium. In this work, we map the 2D distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLF-MUSE) as a part of the PRANGS-MUSE survey. We find that 12 of our 19 galaxies show significant 2D metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of H II regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star-forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution.
View Full Publication open_in_new
Abstract
It is a major open question which physical processes stop gas accretion on to giant molecular clouds (GMCs) and limit the efficiency at which gas is converted into stars. While feedback from supernova explosions has been the popular feedback mechanism included in simulations of galaxy formation and evolution, 'early' feedback mechanisms such as stellar winds, photoionization, and radiation pressure are expected to play an important role in dispersing the gas after the onset of star formation. These feedback processes typically take place on small scales (similar to 10-100 pc) and their effects have therefore been difficult to constrain in environments other than the Milky Way. We apply a novel statistical method to similar to 1 arcsec resolution maps of CO and H a across a sample of nine nearby galaxies, to measure the time over which GMCs are dispersed by feedback from young, high-mass stars, as a function of the galactic environment. We find that GMCs are typically dispersed within similar to 3 Myr on average after the emergence of unembedded high-mass stars, with variations within galaxies associated with morphological features rather than radial trends. Comparison with analytical predictions demonstrates that, independently of the environment, early feedback mechanisms (particularly photoionization and stellar winds) play a crucial role in dispersing GMCs and limiting their star formation efficiency in nearby galaxies. Finally, we show that the efficiency at which the energy injected by these early feedback mechanisms couples with the parent GMC is relatively low (a few tens of per cent), such that the vast majority of momentum and energy emitted by the young stellar populations escapes the parent GMC.
View Full Publication open_in_new
Abstract
We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4< log(M/M-circle dot)< 11.0) nearby (D less than or similar to 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1 ' by 1 ' each) and a total of nearly 15 x 10(6) spectra, covering similar to 1.5 x 10(6) independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This 'cloud-scale' resolution allows detailed demographics and characterisations of H II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2-1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
View Full Publication open_in_new
Abstract
We show the results of a study using the spectral synthesis technique study for the full MaNGA sample showing their chemical enrichment history (ChEH) as well as the evolution of the stellar mass-metallicity relation (MZR) over cosmic time. We find that the more massive galaxies became enriched first and the lower-mass galaxies did so later, producing a change in the MZR that becomes shallower in time. Separating the sample into morphology and star-forming status bins, some particularly interesting results appear: The mass dependence of the MZR becomes less relevant for later morphological types, to the extent that it inverts for Sd/Irr galaxies, suggesting that morphology is at least as important a factor as mass in the chemical evolution. The MZR for the full sample shows a flattening at the high-mass end and another in the low-mass range, but the former only appears for retired galaxies, while the latter only appears for star-forming galaxies. We also find that the average metallicity gradient is currently negative for all mass bins, but for low-mass galaxies, it was inverted at some point in the past, before which all galaxies had a positive gradient. We also compare how diverse the ChEHs are in the different bins we considered, as well as what primarily drives the diversity: By how much galaxies become enriched, or how quickly they do so.
View Full Publication open_in_new
Abstract
We present a rich, multiwavelength, multiscale database built around the PHANGS-ALMA CO (2 - 1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and subgalactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale freefall time and turbulence crossing time are similar to 5-20 Myr, comparable to previous cloud lifetime estimates. The timescales for orbital motion, shearing, and cloud-cloud collisions are longer, similar to 100 Myr. The molecular gas depletion time is 1-3 Gyr and shows weak to no correlations with the other timescales in our data. We publish our measurements online, and expect them to have broad utility to future studies of molecular clouds and star formation.
View Full Publication open_in_new
Abstract
Aims. There exists some consensus that the stellar mass surface density (Sigma(star)) and molecular gas mass surface density (Sigma(mol)) are the main quantities responsible for locally setting the star formation rate. This regulation is inferred from locally resolved scaling relations between these two quantities and the star formation rate surface density (Sigma(SFR)), which have been extensively studied in a wide variety of works. However, the universality of these relations is debated. Here, we probe the interplay between these three quantities across different galactic environments at a spatial resolution of 150 pc.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 882
  • Page 883
  • Page 884
  • Page 885
  • Current page 886
  • Page 887
  • Page 888
  • Page 889
  • Page 890
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025