Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Galaxy clusters trace the largest structures of the Universe and provide ideal laboratories for studying galaxy evolution and cosmology(1,2). Clusters with extended X-ray emission have been discovered at redshifts of up to z approximate to 2.5 (refs (3-7)). Meanwhile, there has been growing interest in hunting for protoclusters, the progenitors of clusters, at higher redshiftss(8-)(14). It is, however, very challenging to find the largest protoclusters at early times, when they start to assemble. Here, we report a giant protocluster of galaxies at z approximate to 5.7, when the Universe was only one billion years old. This protocluster occupies a volume of about 35(3) cubic comoving megaparsecs. It is embedded in an even larger overdense region with at least 41 spectroscopically confirmed, luminous Ly alpha-emitting galaxies (Ly alpha emitters, or LAEs), including several previously reported LAEs(9). Its LAE density is 6.6 times the average density at z approximate to 5.7. It is the only one of its kind in an LAE survey in 4 deg(2) on the sky. Such a large structure is also rarely seen in current cosmological simulations. This protocluster will collapse into a galaxy cluster with a mass of (3.6 +/- 0.9) x10(15) solar masses, comparable to those of the most massive clusters or protoclusters known so far.
View Full Publication open_in_new
Abstract
We examine the diagnostic power of rest-frame ultraviolet (UV) nebular emission lines, and compare them to more commonly used rest-frame optical emission lines, using the test case of a single star-forming knot of the bright lensed galaxy RCSGA 032727-132609 at redshift z similar to 1.7. This galaxy has complete coverage of all the major rest-frame UV and optical emission lines from Magellan/MagE and Keck/NIRSPEC. Using the full suite of diagnostic lines, we infer the physical properties: nebular electron temperature (T-e), electron density (n(e)), oxygen abundance (log (O/H), ionization parameter [log (q), and interstellar medium (ISM) pressure (log (P/k)]. We examine the effectiveness of the different UV, optical, and joint UV-optical spectra in constraining the physical conditions. Using UV lines alone we can reliably estimate log (q), but the same is difficult for log (O/H). UV lines yield a higher (similar to 1.5 dex) log (P/k) than the optical lines, as the former probes a further inner nebular region than the latter. For this comparison, we extend the existing Bayesian inference code IZI, adding to it the capability to infer ISM pressure simultaneously with metallicity and ionization parameter. This work anticipates future rest-frame UV spectral data sets from the James Webb Space Telescope (JWST) at high redshift and from the Extremely Large Telescope (ELT) at moderate redshift.
View Full Publication open_in_new
Abstract
The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7138 H II regions across the disks of eight nearby galaxies using Very Large Telescope/Multi Unit Spectroscopic Explorer (MUSE) optical integral field spectroscopy as part of the PHANGS-MUSE survey. After removing the first-order radial gradients present in each galaxy, we look at the statistics of the metallicity offset (Delta O/H) and explore azimuthal variations. Across each galaxy, we find low (sigma = 0.03-0.05 dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those H II regions that are 1 sigma outliers toward both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher H alpha luminosity, lower H alpha velocity dispersion, younger star clusters, and associated molecular gas clouds showing higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased H alpha velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but cannot always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the interstellar medium.
View Full Publication open_in_new
Abstract
We report one of the first extragalactic observations of electron temperature variations across a spiral arm. Using Multi Unit Spectroscopic Explorer mosaic observations of the nearby galaxy NGC 1672, we measure the [N ii]?5755 auroral line in a sample of 80 H ii regions in the eastern spiral arm of NGC 1672. We discover systematic temperature variations as a function of distance perpendicular to the spiral arm. The electron temperature is lowest on the spiral arm itself and highest on the downstream side. Photoionization models of different metallicity, pressure, and age of the ionizing source are explored to understand what properties of the interstellar medium drive the observed temperature variations. An azimuthally varying metallicity appears to be the most likely cause of the temperature variations. The electron temperature measurements solidify recent discoveries of azimuthal variations of oxygen abundance based on strong lines, and rule out the possibility that the abundance variations are artifacts of the strong-line calibrations.
View Full Publication open_in_new
Abstract
The processes regulating star formation in galaxies are thought to act across a hierarchy of spatial scales. To connect extragalactic star formation relations from global and kiloparsec-scale measurements to recent cloud-scale resolution studies, we have developed a simple, robust method that quantifies the scale dependence of the relative spatial distributions of molecular gas and recent star formation. In this paper, we apply this method to eight galaxies with similar to 1 ''. resolution molecular gas imaging from the Physics at High Angular resolution in Nearby GalaxieS-ALMA (PHANGS-ALMA) survey and PdBI Arcsecond Whirlpool Survey (PAWS) that have matched resolution, high-quality narrowband H alpha imaging. At a common scale of 140 pc, our massive (log(M-*[M-circle dot]) = 9.3-10.7), normally star-forming (SFR[M(circle dot)yr(-1)] = 0.3-5.9) galaxies exhibit a significant reservoir of quiescent molecular gas not associated with star formation as traced by H alpha emission. Galactic structures act as backbones for both molecular gas and H II region distributions. As we degrade the spatial resolution, the quiescent molecular gas disappears, with the most rapid changes occurring for resolutions up to similar to 0.5 kpc. As the resolution becomes poorer, the morphological features become indistinct for spatial scales larger than similar to 1 kpc. The method is a promising tool to search for relationships between the quiescent or star-forming molecular reservoir and galaxy properties, but requires a larger sample size to identify robust correlations between the star-forming molecular gas fraction and global galaxy parameters.
View Full Publication open_in_new
Abstract
Context. Cloud-scale surveys of molecular gas reveal the link between giant molecular cloud properties and star formation across a range of galactic environments. Cloud populations in galaxy disks are considered to be representative of the normal star formation process, while galaxy centers tend to harbor denser gas that exhibits more extreme star formation. At high resolution, however, molecular clouds with exceptional gas properties and star formation activity may also be observed in normal disk environments. In this paper we study the brightest cloud traced in CO(2-1) emission in the disk of nearby spiral galaxy NGC 628.Aims. We characterize the properties of the molecular and ionized gas that is spatially coincident with an extremely bright HII region in the context of the NGC 628 galactic environment. We investigate how feedback and large-scale processes influence the properties of the molecular gas in this region.Methods. High-resolution ALMA observations of CO(2-1) and CO(1-0) emission were used to characterize the mass and dynamical state of the "headlight" molecular cloud. The characteristics of this cloud are compared to the typical properties of molecular clouds in NGC 628. A simple large velocity gradient (LVG) analysis incorporating additional ALMA observations of (CO)-C-13(1-0), HCO+(1-0), and HCN(1-0) emission was used to constrain the beam-diluted density and temperature of the molecular gas. We analyzed the MUSE spectrum using Starburst99 to characterize the young stellar population associated with the HII region.Results. The unusually bright headlight cloud is massive (1-2x10(7) M-circle dot), with a beam-diluted density of n(H2)=5x10(4) cm(-3) based on LVG modeling. It has a low virial parameter, suggesting that the CO emission associated with this cloud may be overluminous due to heating by the HII region. A young (2-4 Myr) stellar population with mass 3x10(5) M-circle dot is associated.Conclusions. We argue that the headlight cloud is currently being destroyed by feedback from young massive stars. Due to the large mass of the cloud, this phase of the its evolution is long enough for the impact of feedback on the excitation of the gas to be observed. The high mass of the headlight cloud may be related to its location at a spiral co-rotation radius, where gas experiences reduced galactic shear compared to other regions of the disk and receives a sustained inflow of gas that can promote the mass growth of the cloud.
View Full Publication open_in_new
Abstract
It remains a major challenge to derive a theory of cloud-scale (less than or similar to 100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-AINIA survey. We measure the spatially resolved (similar to 100 pc) CO-to-H alpha flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10-30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities Sigma(H2) >= 8 M-circle dot pc(-2), the GMC lifetime correlates with timescales for galactic dynamical processes, whereas at Sigma(H2) >= 8 M-circle dot pc(-2) GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H alpha (75-90 per cent of the cloud lifetime), GMCs disperse within just 1-5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4-10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H II regions are the fundamental units undergoing these lifecycles, with mean separations of 100-300 pc in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.
View Full Publication open_in_new
Abstract
In Meidt et al., we showed that gas kinematics on the scale of individual molecular clouds are not entirely dominated by self-gravity but also track a component that originates with orbital motion in the potential of the host galaxy. This agrees with observed cloud line widths, which show systematic variations from virial motions with environment, pointing at the influence of the galaxy potential. In this paper, we hypothesize that these motions act to slow down the collapse of gas and so help regulate star formation. Extending the results of Meidt et al., we derive a dynamical collapse timescale that approaches the free-fall time only once the gas has fully decoupled from the galactic potential. Using this timescale, we make predictions for how the fraction of free-falling, strongly self-gravitating gas varies throughout the disks of star-forming galaxies. We also use this collapse timescale to predict variations in the molecular gas star formation efficiency, which is lowered from a maximum, feedback-regulated level in the presence of strong coupling to the galactic potential. Our model implies that gas can only decouple from the galaxy to collapse and efficiently form stars deep within clouds. We show that this naturally explains the observed drop in star formation rate per unit gas mass in the Milky Way's Central Molecular Zone and other galaxy centers. The model for a galactic bottleneck to star formation also agrees well with resolved observations of dense gas and star formation in galaxy disks and the properties of local clouds.
View Full Publication open_in_new
Abstract
In galactic disks, galactic rotation sets the bulk motion of gas, and its energy and momentum can be transferred toward small scales. Additionally, in the interstellar medium, random and noncircular motions arise from stellar feedback, cloud-cloud interactions, and instabilities, among other processes. Our aim is to comprehend to what extent small-scale gas dynamics is decoupled from galactic rotation. We study the relative contributions of galactic rotation and local noncircular motions to the circulation of gas, Gamma, a macroscopic measure of local rotation, defined as the line integral of the velocity field around a closed path. We measure the circulation distribution as a function of spatial scale in a set of simulated disk galaxies and model the velocity field as the sum of galactic rotation and a Gaussian random field. The random field is parameterized by a broken power law in Fourier space, with a break at the scale at which galactic rotation and noncircular motions contribute equally to Gamma. For our simulated galaxies, the gas dynamics at the scale of molecular clouds is usually dominated by noncircular motions, but in the center of galactic disks galactic rotation is still relevant. Our model shows that the transfer of rotation from large scales breaks at the scale , and this transition is necessary to reproduce the circulation distribution. We find that, and therefore the structure of the gas velocity field, is set by the local conditions of gravitational stability and stellar feedback.
View Full Publication open_in_new
Abstract
We compare the observed turbulent pressure in molecular gas, P-turb, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, P-DE. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multiwavelength data that trace the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that P-turb correlates with-but almost always exceeds-the estimated P-DE on kiloparsec scales. This indicates that the molecular gas is overpressurized relative to the large-scale environment. We show that this overpressurization can be explained by the clumpy nature of molecular gas; a revised estimate of P-DE on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed P-turb in galaxy disks. We also find that molecular gas with cloud-scale in our sample is more likely to be self-gravitating, whereas gas at lower pressure it appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between P-turb and the observed SFR surface density, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between P-DE in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale P-DE reported in previous works.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 880
  • Page 881
  • Page 882
  • Page 883
  • Current page 884
  • Page 885
  • Page 886
  • Page 887
  • Page 888
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025