Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Diana Roman and Andrea Goltz prepare a "trash-cano" at the Earth & Planets Laboratory Open House.
    Breaking News
    November 03, 2025

    Hundreds of Science Enthusiasts Attend Inaugural EPL Open House

    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Grassland with forest on the horizon
    Breaking News
    October 24, 2025

    Prolonged, extreme drought in grassland and shrubland risks Dust Bowl conditions

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These "super-Earths" continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with sigma(mass) < 25%), due in part to the faintness of their host stars causing ground-based mass measurements to be challenging. Recently, three transiting super-Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the "radius gap" detected by Fulton et al. (2017), and all orbit within similar to 6.5 days, easing follow-up observations. Here, we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RADVEL, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis but find the correlated stellar noise is not well constrained by the PFS data and that the GP tends to over-fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c and d) but do indicate that planet b, at 1.64 R-circle plus and similar to 8M(circle plus) is one of the most massive (and dense) super-Earth planets detected to date.
View Full Publication open_in_new
Abstract
We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a approximate to 90% detection efficiency. A search involving approximate to 2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached.
View Full Publication open_in_new
Abstract
The recent detection of a binary neutron star merger and the clear evidence of the decay of radioactive material observed in this event have, after 60 years of effort, provided an astrophysical site for the rapid neutron-capture (r-) process which is responsible for the production of the heaviest elements in our universe. However, observations of metal-poor stars with highly enhanced r-process elements have revealed abundance patterns suggesting that multiple sites may be involved. To address this issue, and to advance our understanding of the r-process, we have initiated an extensive search for bright (V < 13.5), very metal-poor ([Fe/H] < -2) stars in the Milky Way halo exhibiting strongly enhanced r-process signatures. This paper presents the first sample collected in the southern hemisphere using the echelle spectrograph on du Pont 2.5 m telescope at Las Campanas Observatory. We have observed and analyzed 107 stars with -3.13 < [Fe/H] < -0.79. Of those, 12 stars are strongly enhanced in heavy r-process elements (r-II), 42 stars show moderate enhancements of heavy r-process material (r-I), and 20 stars exhibit low abundances of the heavy r-process elements and higher abundances of the light r-process elements relative to the heavy ones (limited-r). This search is more successful at finding r-process-enhanced stars compared to previous searches, primarily due to a refined target selection procedure that focuses on red giants.
View Full Publication open_in_new
Abstract
The field of the globular cluster M10 (NGC 6254) was monitored between 1998 and 2015 in a search for variable stars. V-band light curves were derived for 40 variables or likely variables, most of which are new detections. Proper motions obtained within the CASE project indicate that 18 newly detected variables and 14 previously known ones are members or likely members of the cluster, including one RRc-type, three type II Cepheids, and 14 SX Phe-type pulsators, one contact binary, and six semi-regular red giants. As a by-product of the search we discovered a candidate binary comprised of main sequence stars with the record-short orbital period of 0.042 d. We also confirmed the photometric variability of the red straggler M10-VLA1 hinted at by Shishkovsky, who discovered this object spectroscopically. In Appendix 1 we show that CASE proper motion measurements are in a good agreement with those retrieved from the Gaia archive, while Appendix 2 presents evidence for low frequency gamma Dor-type oscillations in SX Phe stars belonging to M10.
View Full Publication open_in_new
Abstract
We report the discovery of 10 transiting extrasolar planets by the HATSouth survey. The planets range in mass from the super-Neptune HATS-62b, with M-p < 0.179 M-J, to the super-Jupiter HATS-66b, with M-p = 5.33 M-J, and in size from the Saturn HATS-69b, with R-p = 0.94 R-J, to the inflated Jupiter HATS-67b, with R-p = 1.69 R-J. The planets have orbital periods between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts are dwarf stars with masses ranging from 0.89 M-circle dot (HATS-69) to 1.56 M-circle dot (HATS-64) and have apparent magnitudes between V = 12.276 +/- 0.020 mag (HATS-68) and V = 14.095 +/- 0.030 mag (HATS-66). The super-Neptune HATS-62b is the least massive planet discovered to date with a radius larger than Jupiter. Based largely on the Gaia DR2 distances and broadband photometry, we identify three systems (HATS-62, HATS-64, and HATS-65) as having possible unresolved binary star companions. We discuss in detail our methods for incorporating the Gaia DR2 observations into our modeling of the system parameters and into our blend analysis procedures.
View Full Publication open_in_new
Abstract
We present a chemical abundance analysis of the faint halo metal-poor main-sequence star J0023+0307, with [Fe/H] < -6.3, based on a high-resolution (R similar to 35,000) Magellan/MIKE spectrum. The star was originally found to have [Fe/H] < -6.6 based on a Ca II K measurement in an R similar to 2500 spectrum. No iron lines could be detected in our MIKE spectrum. Spectral lines of Li, C, Na, Mg, Al, Si, and Ca were detected. The Li abundance is close to the Spite Plateau, log epsilon(Li) = 1.7, not unlike that of other metal-poor stars, although in stark contrast to the extremely low value found, e.g., in HE 1327-2326 at a similar [Fe/H] value. The carbon G-band is detected and indicates strong C-enhancement, as is typical for stars with low Fe abundances. Elements from Na through Si show a strong odd-even effect, and J0023+0307 displays the second-lowest known [Ca/H] abundance. Overall, the abundance pattern of J0023+0307 suggests that it is a second-generation star that formed from gas enriched by a massive Population III first star exploding as a fallback supernova. The inferred dilution mass of the ejecta is 10(5 +/- 0.5) M-circle dot of hydrogen, strongly suggesting J0023+0307 formed in a recollapsed minihalo. J0023+0307 is likely very old because it has a very eccentric orbit with a pericenter in the Galactic bulge.
View Full Publication open_in_new
Abstract
The radial velocity (RV) method plays a major role in the discovery of nearby exoplanets. To efficiently find planet candidates from the data obtained in high-precision RV surveys, we apply a signal diagnostic framework to detect RV signals that are statistically significant, consistent in time, robust in the choice of noise models, and do not correlated with stellar activity. Based on the application of this approach to the survey data of the Planet Finder Spectrograph, we report 15 planet candidates located in 14 stellar systems. We find that the orbits of the planet candidates around HD 210193, 103949, 8326, and 71135 are consistent with temperate zones around these stars (where liquid water could exist on the surface). With periods of 7.76 and 15.14 days, respectively, the planet candidates around star HIP 54373 form a 1:2 resonance system. These discoveries demonstrate the feasibility of automated detection of exoplanets from large RV surveys, which may provide a complete sample of nearby Earth analogs.
View Full Publication open_in_new
Abstract
Zechmeister et al. surveyed 38 nearby M dwarfs from 2000 to 2007 March with VLT2 and the Ultraviolet and Visual Echelle Spectrograph (UVES) spectrometer. These data have recently been reanalyzed, yielding a significant improvement in the Doppler velocity precision. Spurred by this, we have combined the UVES data with velocity sets from High Accuracy Radial velocity Planet Searcher, Magellan/Planet Finder Spectrograph, and Keck/High Resolution Echelle Spectrometer. Sixteen planet candidates have been uncovered orbiting nine M dwarfs. Five of them are new planets corresponding to radial velocity signals, which are not sensitive to the choice of noise models and are identified in multiple data sets over various time spans. Eight candidate planets require additional observation to be confirmed. We also confirm three previously reported planets. Among the new planets, GJ 180 d and GJ 229A c are super-Earths located in the conservative habitable zones of their host stars. We investigate their dynamical stability using the Monte Carlo approach and find both planetary orbits are robust to the gravitational perturbations of the companion planets. Due to their proximity to the Sun, the angular separation between the host stars and the potentially habitable planets in these two systems is 25 and 59 mas, respectively. They are thus good candidates for future direct imaging by James Webb Space Telescope and E-ELT. In addition, we find GJ 433 c, a cold super-Neptune belonging to an unexplored population of Neptune-like planets. With a separation of 05 from its host star, GJ 433 c is probably the first realistic candidate for the direct imaging of cold Neptunes. A comprehensive survey of these planets is important for the studies of planet formation.
View Full Publication open_in_new
Abstract
The abundance of short-period planetary systems with high orbital obliquities relative to the spin of their host stars is often taken as evidence that scattering processes play important roles in the formation and evolution of these systems. More recent studies have suggested that wide binary companions can tilt protoplanetary disks, inducing a high stellar obliquity that form through smooth processes like disk migration. DS Tuc Ab, a transiting planet with an 8.138 day period in the 40 Myr Tucana-Horologium association, likely orbits in the same plane as its now-dissipated protoplanetary disk, enabling us to test these theories of disk physics. Here, we report on Rossiter-McLaughlin observations of one transit of DS Tuc Ab with the Planet Finder Spectrograph on the Magellan Clay Telescope at Las Campanas Observatory. We confirm the previously detected planet by modeling the planet transit and stellar activity signals simultaneously. We test multiple models to describe the stellar activity-induced radial velocity variations over the night of the transit, finding the obliquity to be low: lambda = 12 degrees +/- 13 degrees, which suggests that this planet likely formed through smooth disk processes and its protoplanetary disk was not significantly torqued by DS Tuc B. The specific stellar activity model chosen affects the results at the approximate to 5 degrees level. This is the youngest planet to be observed using this technique; we provide a discussion on best practices to accurately measure the observed signal of similar young planets.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 850
  • Page 851
  • Page 852
  • Page 853
  • Current page 854
  • Page 855
  • Page 856
  • Page 857
  • Page 858
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025