Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report the discovery of HATS-5b, a transiting hot Saturn orbiting a G-type star, by the HATSouth survey. HATS-5b has a mass of Mp approximate to 0.24 M-J, radius of R-p approximate to 0.91 R-J, and transits its host star with a period of P approximate to 4.7634 days. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V-band magnitude of 12.6, mass of 0.94 M-circle dot, and radius of 0.87 R-circle dot. The relatively high scale height of HATS-5b and the bright, photometrically quiet host starmake this planet a favorable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas giants and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas giant population.
View Full Publication open_in_new
Abstract
Photometric observations of GQ Mus performed between 1992 and 2011 are reported. We find that the total amplitude of the orbital modulation of its brightness decreased from similar to 0.9 mag in 1992 to similar to 0.2 mag in 2010, becoming comparable to the amplitude of chaotic flickering on a time scale of several minutes. Optical spectra obtained in 2001 and 2012 indicate continuing activity of GQ Mus. The spectra show broad emission lines of He II and H I typical for magnetic cataclysmic variables. The nova was found to be an UV-bright object in 2001 and 2012. We also show that the orbital period of GQ Mus has been constant between 1989 and 2010-2011.
View Full Publication open_in_new
Abstract
We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V = 13.46 mag G star. HATS-4b has a period of P approximate to 2.5167 days, mass of M-p approximate to 1.32 M-Jup, radius of R-p approximate to 1.02 R-Jup, and density of rho(p) = 1.55 +/- 0.16 g cm(-3) approximate to 1.24 rho(Jup). The host star has a mass of 1.00 M-circle dot, a radius of 0.92 R-circle dot, and a very high metallicity [Fe/H]= 0.43 +/- 0.08. HATS-4b is among the densest known planets with masses between 1 and 2 M-J and is thus likely to have a significant content of heavy elements of the order of 75 M-circle plus. In this paper we present the data reduction, radial velocity measurements, and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique for simultaneously estimating nu sin i and macroturbulence using high resolution spectra.
View Full Publication open_in_new
Abstract
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 +/- 0.03 days and minimum mass (m sin i) of 5.4 +/- 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 +/- 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a "super-Venus," featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.
View Full Publication open_in_new
Abstract
One of the main questions concerning Type Ia supernovae is the nature of the binary companion of the exploding white dwarf. A major discriminant between different suggested models is the presence and physical properties of circumstellar material at the time of explosion. If present, this material will be ionized by the ultraviolet radiation of the explosion and later recombine. This ionization-recombination should manifest itself as time-variable absorption features that can be detected via multi-epoch high-spectral-resolution observations. Previous studies have shown that the strongest effect is seen in the neutral sodium D lines. We report on observations of neutral sodium absorption features observed in multi-epoch high-resolution spectra of 14 Type Ia supernova events. This is the first multi-epoch high-resolution study to include multiple SNe. No variability in line strength that can be associated with circumstellar material is detected in the events presented in this paper. If we include previously published events, we find that similar to 18 per cent of the events in the extended sample exhibit time-variable sodium features associated with circumstellar material. We explore the implication of this study on our understanding of the progenitor systems of Type Ia supernovae via the current Type Ia supernova multi-epoch high-spectral-resolution sample.
View Full Publication open_in_new
Abstract
We present an analysis of the detached eclipsing binaries V44 and V54 belonging to the globular cluster M55. For V54 we obtain the following absolute parameters: M-p = 0.726 +/- 0.015M(circle dot), R-p = 1.006 +/- 0.009R(circle dot,) L-p = 1.38 +/- 0.07L(circle dot) for the primary, and M-s = 0.555 +/- 0.008M(circle dot,) R-s = 0.528 +/- 0.005R(circle dot) L-s = 0.16 +/- 0.01 L-circle dot for the secondary. The age and apparent distance modulus of V54 are estimated at 13.3-14.7 Gyr and 13.94 +/- 0.05 mag, respectively. This derived age is substantially larger than ages we have derived from the analysis of binary systems in 47 Tuc and M4. The secondary of V44 is so weak in the optical domain that only mass function and relative parameters are obtained for the components of this system. However, there is a good chance that the velocity curve of the secondary could be derived from near-IR spectra. As the primary of V44 is more evolved than that of V54, such data would impose much tighter limits on the age and distance of M55.
View Full Publication open_in_new
Abstract
The field of the metal-rich open cluster NGC 6253 has been surveyed in a search for variable stars. A total of 25 new variables were detected, 14 of which are bright stars with 13 < V < 15 mag. This domain was not covered in an earlier work by de Marchi et al. (2010). Four variables, including three short-period eclipsing binaries, are candidate blue straggler stars. Two new detached eclipsing binaries at the turnoff of the cluster and another one on the subgiant branch were identified. These three systems deserve a detailed follow-up study aimed at a determination of the age and distance of NGC 6253. New photometry for 132 stars from the sample of de Marchi et al. (2010) is provided.
View Full Publication open_in_new
Abstract
We present the first detailed analysis of the detached eclipsing binary V15 in the super-metal rich open cluster NGC 6253. We obtain the following absolute parameters: M-p = 1.303 +/- 0.006 M-circle dot, R-p = 1.71 +/- 0.03 R-circle dot, L-p = 2.98 +/- 0.10 L-circle dot for the primary, and M-s = 1.225 +/- 0.006 M-circle dot, R-s = 1.44 +/- 0.02 R-circle dot, L-s = 2.13 +/- 0.06 L-circle dot for the secondary. Based on Dartmouth isochrones, the age of NGC 6253 is estimated to be 3.80-4.25 Gyr from the mass radius diagram and 3.9-4.6 Gyr from color magnitude diagram fitting. Both of these estimates are significantly higher than those reported so far. The derived apparent distance modulus of 11.65 mag agrees well with the range of 10.9-12.2 mag derived by other authors; however our estimated reddening (0.113 mag) is lower than the lowest published value (0.15 mag). We confirm earlier observations that model atmospheres are not accurate enough to account for the whole CMD of the cluster, with the largest discrepancies appearing on the subgiant and giant branches. Although age estimation from the mass radius diagram is a relatively safe, distance- and reddening-independent procedure, our results should be verified by photometric and spectroscopic observations of additional detached eclipsing binaries which we have discovered, at least two of which are proper-motion members of NGC 6253.
View Full Publication open_in_new
Abstract
A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30: 70 on the RGB to 100: 0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan-Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be < RVhelio.> = -18.56 km s(-1) (sigma = 10.21 km s-1) and <[Fe/H]> = -0.68 (sigma = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63: 37 on the AGB and 45: 55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (less than or similar to 20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will ascend the AGB.
View Full Publication open_in_new
Abstract
We present a homogeneous chemical abundance analysis of five of the most metal-poor stars in the Sculptor dwarf spheroidal galaxy. We analyze new and archival high resolution spectroscopy from Magellan/MIKE and VLT/UVES and determine stellar parameters and abundances in a consistent way for each star. Two of the stars in our sample, at [Fe/H] = -3.5 and [Fe/H] = -3.8, are new discoveries from our Ca K survey of Sculptor, while the other three were known in the literature. We confirm that Scl 07-50 is the lowest metallicity star identified in an external galaxy, at [Fe/H] = -4.1. The two most metal-poor stars both have very unusual abundance patterns, with striking deficiencies of the a elements, while the other three stars resemble typical extremely metal-poor Milky Way halo stars. We show that the star-to-star scatter for several elements in Sculptor is larger than that for halo stars in the same metallicity range. This scatter and the uncommon abundance patterns of the lowest metallicity stars indicate that the oldest surviving Sculptor stars were enriched by a small number of earlier supernovae, perhaps weighted toward high-mass progenitors from the first generation of stars the galaxy formed.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 848
  • Page 849
  • Page 850
  • Page 851
  • Current page 852
  • Page 853
  • Page 854
  • Page 855
  • Page 856
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025