Abstract
We present precise Doppler observations of WASP-47, a transiting planetary system featuring a hot Jupiter with both inner and outer planetary companions. This system has an unusual architecture and also provides a rare opportunity to measure planet masses in two different ways: the Doppler method, and the analysis of transit-timing variations (TTV). Based on the new Doppler data, obtained with the Planet Finder Spectrograph on the Magellan/Clay 6.5 m telescope, the mass of the hot Jupiter is 370 +/- 29 M-circle plus. This is consistent with the previous Doppler determination as well as the TTV determination. For the inner planet WASP-47e, the Doppler data lead to a mass of 12.2 +/- 3.7 M-circle plus, in agreement with the TTV-based upper limit of < 22 M-circle plus (95% confidence). For the outer planet WASP-47d, the Doppler mass constraint of 10.4 +/- 8.4 M-circle plus is consistent with the TTV-based measurement of 15.2(-7.6)(+6.7) M-circle plus.