Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present a multitechnique approach to experimentally determine the elastic anisotropy of polycrystalline hcp Fe at high pressure. Directional phonon measurements from inelastic X-ray scattering on a sample with lattice preferred orientation at 52 GPa in a diamond anvil cell were coupled with X-ray diffraction data to determine the elastic tensor. Comparison of the results from this new method with the elasticity determined by lattice strain analysis of radial X-ray diffraction measurements showed significant differences, highlighting the importance of strength anisotropy in hcp Fe. At 52 GPa, we found that a method which combines results from inelastic scattering and pressure-volume measurements gives a shape in the velocity anisotropy close to sigmoidal (with a faster c and slower a axis) a smaller magnitude in the anisotropy and compared to velocities based on the lattice strain method which gives a bell shape velocity distribution with the fast direction between the c and a axes. We used additional results from nuclear resonant inelastic X-ray scattering to constrain errors and provide additional validation of the accuracy of our results.
View Full Publication open_in_new
Abstract
Results of x-ray diffraction and nitrogen K-edge x-ray Raman scattering (XRS) investigations of the crystal and electronic structure of ionic compound Li3N across two high-pressure phase transitions [A. Lazicki , Phys. Rev. Lett. 95, 165503 (2005)] are interpreted using density-functional theory. A low-energy peak in the XRS spectrum which is observed in both low-pressure hexagonal phases of Li3N and absent in the high-pressure cubic phase is found to originate from an interlayer band similar to the important free-electron-like state present in the graphite and graphite intercalated systems, but not observed previously in ionic insulators. XRS detection of the interlayer state is made possible because of its strong hybridization with the nitrogen p bands. A pressure-induced increase in the band gap of the high-pressure cubic phase of Li3N is explained by the differing pressure dependencies of different quantum-number bands and is shown to be a feature of several low-Z closed-shell ionic materials.
View Full Publication open_in_new
Abstract
Results of x-ray diffraction and nitrogen K-edge x-ray Raman scattering (XRS) investigations of the crystal and electronic structure of ionic compound Li3N across two high-pressure phase transitions [A. Lazicki , Phys. Rev. Lett. 95, 165503 (2005)] are interpreted using density-functional theory. A low-energy peak in the XRS spectrum which is observed in both low-pressure hexagonal phases of Li3N and absent in the high-pressure cubic phase is found to originate from an interlayer band similar to the important free-electron-like state present in the graphite and graphite intercalated systems, but not observed previously in ionic insulators. XRS detection of the interlayer state is made possible because of its strong hybridization with the nitrogen p bands. A pressure-induced increase in the band gap of the high-pressure cubic phase of Li3N is explained by the differing pressure dependencies of different quantum-number bands and is shown to be a feature of several low-Z closed-shell ionic materials.
View Full Publication open_in_new
Abstract
The phonon density of states (DOS) and phonon entropy of B2 FeAl were determined as functions of the Fe site vacancy concentration using several scattering techniques and were computed from first principles. Measurements at elevated temperature and pressure were performed to explore volume effects, test the usefulness of the quasiharmonic (QH) approximation, and provide comparison for the first-principles calculations. The average temperature and pressure dependencies of phonons were consistent with the QH model. The decrease in specific volume associated with the introduction of vacancies causes a stiffening of the DOS that was captured well with the experimentally determined Gruumlneisen parameter. Features associated with vacancies in the DOS are not well explained by this model, however, especially in the gap between the acoustic and optic branches. First-principles calculations indicated that these modes are primarily associated with vibrations of Al atoms in the first-nearest-neighbor shell of the vacancy, with some vibration amplitude also involving the second-nearest-neighbor Fe atoms. At the vacancy concentrations of study, the phonon entropy of vacancy formation was found to be approximately -1.7k(B)/atom, about half as large and of opposite sign as the configurational entropy of vacancy formation.
View Full Publication open_in_new
Abstract
The phonon density of states (DOS) and phonon entropy of B2 FeAl were determined as functions of the Fe site vacancy concentration using several scattering techniques and were computed from first principles. Measurements at elevated temperature and pressure were performed to explore volume effects, test the usefulness of the quasiharmonic (QH) approximation, and provide comparison for the first-principles calculations. The average temperature and pressure dependencies of phonons were consistent with the QH model. The decrease in specific volume associated with the introduction of vacancies causes a stiffening of the DOS that was captured well with the experimentally determined Gruumlneisen parameter. Features associated with vacancies in the DOS are not well explained by this model, however, especially in the gap between the acoustic and optic branches. First-principles calculations indicated that these modes are primarily associated with vibrations of Al atoms in the first-nearest-neighbor shell of the vacancy, with some vibration amplitude also involving the second-nearest-neighbor Fe atoms. At the vacancy concentrations of study, the phonon entropy of vacancy formation was found to be approximately -1.7k(B)/atom, about half as large and of opposite sign as the configurational entropy of vacancy formation.
View Full Publication open_in_new
Abstract
A nanocrystalline face-centered cubic (fcc) solid solution of 6% Fe in Cu was prepared by high-energy ball milling, and annealed at temperatures from 200 to 360 degrees C to induce chemical unmixing. The chemical state of the material was characterized by three-dimensional atom probe microscopy, Mossbauer spectrometry and X-ray powder diffractometry. The unmixing was heterogeneous, with iron atoms forming iron-rich zones that thicken with further annealing. The phonon partial density of states (pDOS) of Fe-57 was measured by nuclear resonant inelastic X-ray scattering, showing the pDOS of the as-prepared material to be that of an fcc crystal. The features of this pDOS became broader in the early stages of unmixing, but only small changes in average phonon frequencies occurred until the body-centered cubic (bcc) phase began to form. The vibrational entropy calculated from the pDOS underwent little change during the early stage of annealing, but decreased rapidly when the bcc phase formed in the material. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Two sp + sp(3)-hybridized yne-diamond (YD) allotropes are designed by employing first-principle calculations. The YDs are constructed by replacing half carbon single bonds (C-C) along the <001> direction in 2H-diamond and 4H-diamond with acetylenic linkages (C-C=C-C). Both YDs are energetically more favorable than experimental graphdiyne, theoretical graphynes (e.g., alpha-, beta-, and 6,6,12-graphyne), and T-carbon. The YDs are confirmed to be mechanically and dynamically stable. Different from the recently proposed semiconductive YD based on cubic diamond (i.e. Y-carbon), electronic band structure calculations show that both YDs we proposed are semimetals. Mechanically, two YDs inherit the superhardness and high tensile strength from the parent diamonds. We hope that our present findings can be useful in guiding the design and syntheses of superhard and semimetallic carbon materials. (C) 2014 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Two sp + sp(3)-hybridized yne-diamond (YD) allotropes are designed by employing first-principle calculations. The YDs are constructed by replacing half carbon single bonds (C-C) along the <001> direction in 2H-diamond and 4H-diamond with acetylenic linkages (C-C=C-C). Both YDs are energetically more favorable than experimental graphdiyne, theoretical graphynes (e.g., alpha-, beta-, and 6,6,12-graphyne), and T-carbon. The YDs are confirmed to be mechanically and dynamically stable. Different from the recently proposed semiconductive YD based on cubic diamond (i.e. Y-carbon), electronic band structure calculations show that both YDs we proposed are semimetals. Mechanically, two YDs inherit the superhardness and high tensile strength from the parent diamonds. We hope that our present findings can be useful in guiding the design and syntheses of superhard and semimetallic carbon materials. (C) 2014 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Earth's inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (v(S)) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere.
View Full Publication open_in_new
Abstract
Earth's inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (v(S)) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 627
  • Page 628
  • Page 629
  • Page 630
  • Current page 631
  • Page 632
  • Page 633
  • Page 634
  • Page 635
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026