Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Background Corticotropin-releasing factor (CRF) mediates our body's overall responses to stress. The role of central CRF in stress-stimulated colonic motility is well characterized. We hypothesized that transient perturbation in expression of enteric CRF is sufficient to change stress-induced colonic motor and secretory responses. Methods Sprague-Dawley rats (adult, male) were subjected to 1-h partial restraint stress (PRS) and euthanized at 0, 4, 8, and 24h. CRF mRNA and peptide levels in the colon were quantified by real-time RT-PCR, enzyme immuno-assay and immunohistochemistry. Double-stranded RNA (dsRNA) designed to target CRF (dsCRF) was injected into the colonic wall to attain RNA interference-mediated inhibition of CRF mRNA expression. DsRNA for -globin was used as a control (dsControl). Four days after dsRNA injection, rats were subjected to 1-h PRS. Fecal output was measured. Ussing chamber techniques were used to assess colonic mucosal ion secretion and transepithelial tissue conductance. Key Results Exposure to PRS elevated CRF expression and increased CRF release in the rat colon. Injection of dsCRF inhibited basal CRF expression and prevented the PRS-induced increase in CRF expression, whereas CRF expression in dsControl-injected colons remained high after PRS. In rats treated with dsControl, PRS caused a significant increase in fecal pellet output, colonic baseline ion secretion, and transepithelial tissue conductance. Inhibition of CRF expression in the colon prevented PRS-induced increase in fecal output, baseline ion secretion, and transepithelial tissue conductance. Conclusions & Inferences These results provide direct evidence that transient perturbation in peripherally expressed CRF prevents colonic responses to stress.
View Full Publication open_in_new
Abstract
Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MAT alpha allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.
View Full Publication open_in_new
Abstract
High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd2CuO4 (the so-called T') structure T'-Pr1.3-xLa0.7CexCuO4 with x = 0.1 are reported. Astrong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T' to the K2NiF4 (the so-called T) structure is observed up to the maximum applied pressure of p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T-so in T'-Pr1.3-xLa0.7CexCuO4 (x = 0.1) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T-c. All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T'-Pr1.3-xLa0.7CexCuO4 (x = 0.1). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.
View Full Publication open_in_new
Abstract
One challenge in studying high-temperature superconductivity (HTSC) stems from a lack of direct experimental evidence linking lattice inhomogeneity and superconductivity. Here, we apply synchrotron hard X-ray nanoimaging and small-angle scattering to reveal a novel micron-scaled ribbon phase in optimally doped Bi2Sr2CaCu2O8+delta (Bi-2212, with delta = 0.1). The morphology of the ribbon-like phase evolves simultaneously with the dome-shaped T-c behavior under pressure. X-ray absorption studies show that the increasing of T-c is associated with oxygen-hole redistribution in the CuO2 plan, while T-c starts to decrease with pressure when oxygen holes become immobile. Additional X-ray irradiation experiments reveal that nanoscaled short-range ordering of oxygen vacancies could further lower T-c which indicates that the optimal T-c is affected not only by an optimal morphology of the ribbon phase, but also an optimal distribution of oxygen vacancies. Our studies thereby provide for the first time compelling experimental evidence correlating the T-c with micron to nanoscale inhomogeneity.
View Full Publication open_in_new
Abstract
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry remains to be fully recognized. For this sake, we investigate pressure-induced phase transitions in the spin-orbit Mott insulator Sr3Ir2O7 with Raman, electrical resistance, and x-ray diffraction measurements. We reveal an interesting magnetic transition coinciding with a structural transition at 14.4 GPa, but without a concurrent insulator-metal transition. The conventional correlation between magnetic and Mott insulating states is thereby absent. The observed softening of the one-magnon mode can be explained by a reduced tetragonal distortion, while the actual magnetic transition is associated with tilting of the IrO6 octahedra. This work highlights the critical role of lattice frustration in determining the high-pressure phases of Sr3Ir2O7. The ability to control electromagnetic properties via manipulating the crystal structure with pressure promises a new way to explore new quantum states in spin-orbit Mott insulators.
View Full Publication open_in_new
Abstract
Lineage-specific stem cells are critical for the production and maintenance of specific cell types and tissues in multicellular organisms. In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). SPCH-driven asymmetric and self-renewing divisions allow flexibility in stomatal production and overall organ growth. How SPCH directs stomatal lineage cell behaviors, however, is unclear. Here, we improved the chromatin immunoprecipitation (ChIP) assay and profiled the genome-wide targets of Arabidopsis SPCH in vivo. We found that SPCH controls key regulators of cell fate and asymmetric cell divisions and modulates responsiveness to peptide and phytohormone-mediated intercellular communication. Our results delineate the molecular pathways that regulate an essential adult stem cell lineage in plants.
View Full Publication open_in_new
Abstract
The complicated story of the Cetus Stream (CS) is recently revealed by its newly discovered similar to 150 members with 6D kinematics from the cross-matched catalog of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR5 K giants and Gaia DR2. It exhibits a very diffuse structure at heliocentric distances between 20 and 50 kpc, extending over at least 100 degrees, and crossing the Galactic plane. Interestingly, The CS is dynamically linked to a massive globular cluster, NGC 5824. A suggestive scenario is that NGC 5824 was the nuclear star cluster of the dwarf progenitor of the CS. We explore this scenario by modeling the disruption process of a dwarf galaxy in the Milky Way potential, on the orbit of NGC 5824, using a suite of N-body simulations. Our results show that the simulated stream can marginally recover the main component of the CS, which is the densest part of the observed stream. Inspired by this mismatch, we use a dwarf progenitor following the representative orbit of the main component members, and find it can reproduce the general morphology of the CS. This gives us a more favorable scenario of the CS progenitor, in which NGC 5824 was not the core, but located off-center. Our fiducial model also predicts a vast extension of the CS in the South, surprisingly coincident with a newly discovered wide southern stream "Palca." Another more diffuse substructure, the Eridanus-Phoenix overdensity is also likely to be related to the CS progenitor.
View Full Publication open_in_new
Xiaobin Zheng 2021 headshot

Xiaobin Zheng

Bioinformatician

Embryology
 Ross Pedersen 2021 headshot

Ross Pedersen

Postdoctoral Associate

Embryology
Minjie Hu 2021 headshot

Minjie Hu

Postdoctoral Associate

Embryology

Pagination

  • Previous page chevron_left
  • …
  • Page 626
  • Page 627
  • Page 628
  • Page 629
  • Current page 630
  • Page 631
  • Page 632
  • Page 633
  • Page 634
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025