Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A new miniature panoramic diamond anvil cell (mini-pDAC) as well as a unique gas membrane-driven mechanism is developed and implemented to measure electronic, magnetic, vibrational, and thermodynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the synchrotron Mossbauer spectroscopy (SMS) simultaneously at high pressure (over Mbar) and low temperature (T < 10 K). The gas membrane system allows in situ pressure tuning of the mini-pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat system to achieve low temperatures, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The system has achieved sample temperatures as low as 9 K. Using the membrane, sample pressures of up to 1.4 Mbar have been generated from this mini-pDAC. The instrument has been routinely used at 3-ID, Advanced Photon Source, for NRIXS and SMS studies. The same instrument can easily be used for other X-ray techniques, such as X-ray radial diffraction, X-ray Raman scattering, X-ray emission spectroscopy, and X-ray inelastic scattering under high pressure and low temperature. In this paper, technical details of the mini-pDAC, membrane engaging mechanism, and the cryostat system are described, and some experimental results are discussed. Published by AIP Publishing.
View Full Publication open_in_new
Abstract
A new miniature panoramic diamond anvil cell (mini-pDAC) as well as a unique gas membrane-driven mechanism is developed and implemented to measure electronic, magnetic, vibrational, and thermodynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the synchrotron Mossbauer spectroscopy (SMS) simultaneously at high pressure (over Mbar) and low temperature (T < 10 K). The gas membrane system allows in situ pressure tuning of the mini-pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat system to achieve low temperatures, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The system has achieved sample temperatures as low as 9 K. Using the membrane, sample pressures of up to 1.4 Mbar have been generated from this mini-pDAC. The instrument has been routinely used at 3-ID, Advanced Photon Source, for NRIXS and SMS studies. The same instrument can easily be used for other X-ray techniques, such as X-ray radial diffraction, X-ray Raman scattering, X-ray emission spectroscopy, and X-ray inelastic scattering under high pressure and low temperature. In this paper, technical details of the mini-pDAC, membrane engaging mechanism, and the cryostat system are described, and some experimental results are discussed. Published by AIP Publishing.
View Full Publication open_in_new
Abstract
Carbon materials with full sp(2)-hybridized bonding, e.g. zero-dimensional (0D) fullerenes, 1D carbon nanotubes, and 2D graphene, possess outstanding and unparalleled properties, and have unique scientific and technological importance. The theoretical design and experimental exploration of other types of novel sp(2) carbon allotropes, especially with 3D architectures, is always a compelling scientific theme. Here we proposed a class of low-energy 3D sp(2) carbons with exceptional properties, not only possessing excellent mechanical properties such as high 3D strength, rubber-like ultra-stretchability, and negative Poisson's ratio, but also including the electronic properties of graphite-like metallicity and graphene-like Dirac cone, which are the desirable properties across a broad range of potential applications. Furthermore, a design route was suggested to access these 3D sp(2) carbons by the polymerization of edge-functionalized graphene nanoribbon arrays.
View Full Publication open_in_new
Abstract
Carbon materials with full sp(2)-hybridized bonding, e.g. zero-dimensional (0D) fullerenes, 1D carbon nanotubes, and 2D graphene, possess outstanding and unparalleled properties, and have unique scientific and technological importance. The theoretical design and experimental exploration of other types of novel sp(2) carbon allotropes, especially with 3D architectures, is always a compelling scientific theme. Here we proposed a class of low-energy 3D sp(2) carbons with exceptional properties, not only possessing excellent mechanical properties such as high 3D strength, rubber-like ultra-stretchability, and negative Poisson's ratio, but also including the electronic properties of graphite-like metallicity and graphene-like Dirac cone, which are the desirable properties across a broad range of potential applications. Furthermore, a design route was suggested to access these 3D sp(2) carbons by the polymerization of edge-functionalized graphene nanoribbon arrays.
View Full Publication open_in_new
Abstract
Sound velocities of cementite Fe3C have been measured up to 1.5 Mbar and at 300 K in a diamond anvil cell using the nuclear resonant inelastic X-ray scattering (NRIXS) technique. From the partial phonon density of states (pDOS) and equation of state (EOS) of Fe3C, we derived its elastic parameters including shear modulus, compressional (V-p) and shear-wave (V-s) velocities to core pressures. A pressure-induced spin-pairing transition in the powdered Fe3C sample was found to occur gradually between 10 and 50 GPa by the X-ray Emission Spectroscopy (XES) measurements. Following the completion of the spin-pairing transition, the V-p and V-s of low-spin Fe3C increased with pressure at a markedly lower rate than its high-spin counterpart. Our results suggest that the incorporation of carbon in solid iron to form iron carbide phases, Fe3C and Fe7C3, could effectively lower the V-s but respectively raise the Poisson's ratio by 0.05 and 0.07 to approach the seismically observed values for the Earth's inner core. The comparison with the preliminary reference Earth model (PREM) implies that an inner core composition containing iron and its carbon-rich alloys can satisfactorily explain the observed seismic properties of the inner core. (C) 2018 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Sound velocities of cementite Fe3C have been measured up to 1.5 Mbar and at 300 K in a diamond anvil cell using the nuclear resonant inelastic X-ray scattering (NRIXS) technique. From the partial phonon density of states (pDOS) and equation of state (EOS) of Fe3C, we derived its elastic parameters including shear modulus, compressional (V-p) and shear-wave (V-s) velocities to core pressures. A pressure-induced spin-pairing transition in the powdered Fe3C sample was found to occur gradually between 10 and 50 GPa by the X-ray Emission Spectroscopy (XES) measurements. Following the completion of the spin-pairing transition, the V-p and V-s of low-spin Fe3C increased with pressure at a markedly lower rate than its high-spin counterpart. Our results suggest that the incorporation of carbon in solid iron to form iron carbide phases, Fe3C and Fe7C3, could effectively lower the V-s but respectively raise the Poisson's ratio by 0.05 and 0.07 to approach the seismically observed values for the Earth's inner core. The comparison with the preliminary reference Earth model (PREM) implies that an inner core composition containing iron and its carbon-rich alloys can satisfactorily explain the observed seismic properties of the inner core. (C) 2018 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Much effort has been devoted to understand how chromatin modification regulates development and disease. Despite recent progress, however, it remains difficult to obtain high-quality epigenomic maps using chromatin-immunoprecipitation-coupled deep sequencing (ChIP-seq) in samples with low-cell numbers. Here, we present an Atlantis dsDNase-based technology, aFARP-ChIP-seq, that provides accurate profiling of genome-wide histone modifications in as few as 100 cells. By mapping histone lysine trimethylation (H3K4me3) and acetylation (H3K27Ac) in group I innate lymphoid cells (ILC1) sorted from different tissues in parallel, aFARP-ChIP-seq uncovers putative active promoter and enhancer landscapes of several tissue-specific Natural Killer cells (NK) and ILC1. aFARP-ChIP-seq is also highly effective in mapping transcription factor binding sites in small number of cells. Thus, aFARP-ChIP-seq offers multiplexing mapping of both epigenome and transcription factor binding sites using a small number of cells.
View Full Publication open_in_new
Abstract
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of Type Ia supernovae (SNe Ia) reported to have excess blue emission at early times. This paper presents extensive BVRIYJHK(s)-band light curves of SN 2017cbv, covering the phase from -16 to +125 days relative to B-band maximum light. The SN 2017cbv reached a B-band maximum of 11.710 0.006 mag, with a postmaximum magnitude decline of Delta m(15)(B) = 0.990 0.013 mag. The SN suffered no host reddening based on Phillips intrinsic color, the Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus mu = 30.58 0.05 mag and assuming H-0 = 72 km s(-1) Mpc(-1), we found that 0.73 M Ni-56 was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening- and distance-free methods via the phases of the secondary maximum of the near-IR- (NIR-) band light curves. We also present 14 NIR spectra from -18 to +49 days relative to the B-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No Pa beta emission feature was detected from our postmaximum NIR spectra, placing a hydrogen mass upper limit of 0.1 M. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN Ia, even though its early evolution is marked by a flux excess not seen in most other well-observed normal SNe Ia. We also compare the exquisite light curves of SN 2017cbv with some M-ch delayed detonation models and sub-M-ch double detonation models.
View Full Publication open_in_new
Abstract
Here we review the achievements of volcano geodesy in Iceland during the last 15 years. Extensive measurements of crustal deformation have been conducted using a variety of geodetic techniques, including leveling, electronic distance measurements, campaign and continuous Global Positioning System (GPS) geodesy, and interferometric analysis of synthetic aperture radar images (InSAR). Results from these measurements provide a comprehensive view of the behavior of Icelandic volcanoes. Between inflation, intrusion, and eruption episodes, volcanoes are likely to deflate or show no sign of seismic activity. Subsidence rates are often in the range of a few millimeters to a few centimeters a year, reducing progressively with time since the last eruption or intrusion at the volcano. Subsidence can be caused by cooling and contraction of magma, outflow of magma, it can be related to plate spreading. Volcano subsidence or lack of deformation is often interrupted by episodic magma flow towards near-surface locations. Such magma recharge has been observed geodetically at Hengill, Hekla, Eyjafiallajokull, Katla, Grimsvotn, and Krafla volcanoes, with inflow inferred to last from a few months up to two decades. In the last 15 years, five volcanic eruptions, three intrusive events and two > M6 earthquakes have occurred. In recent years, the Grimsvotn and Katla volcanoes have exhibited continuous inflation of a few centimeters per year, which at Grimsvotn culminated in an eruption on I November 2004. Hekla and Torfajokull volcanoes have inflated at rates an order-of-magnitude less. Subsidence is occurring presently at the Askja and Krafla volcanoes. Within the period of geodetic measurement, signals consistent with no deformation are typical for most of the 35 active volcanoes in Iceland. (c) 2005 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of Type Ia supernovae (SNe Ia) reported to have excess blue emission at early times. This paper presents extensive BVRIYJHK(s)-band light curves of SN 2017cbv, covering the phase from -16 to +125 days relative to B-band maximum light. The SN 2017cbv reached a B-band maximum of 11.710 0.006 mag, with a postmaximum magnitude decline of Delta m(15)(B) = 0.990 0.013 mag. The SN suffered no host reddening based on Phillips intrinsic color, the Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus mu = 30.58 0.05 mag and assuming H-0 = 72 km s(-1) Mpc(-1), we found that 0.73 M Ni-56 was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening- and distance-free methods via the phases of the secondary maximum of the near-IR- (NIR-) band light curves. We also present 14 NIR spectra from -18 to +49 days relative to the B-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No Pa beta emission feature was detected from our postmaximum NIR spectra, placing a hydrogen mass upper limit of 0.1 M. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN Ia, even though its early evolution is marked by a flux excess not seen in most other well-observed normal SNe Ia. We also compare the exquisite light curves of SN 2017cbv with some M-ch delayed detonation models and sub-M-ch double detonation models.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 626
  • Page 627
  • Page 628
  • Page 629
  • Current page 630
  • Page 631
  • Page 632
  • Page 633
  • Page 634
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025