Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 1310) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.
View Full Publication open_in_new
Abstract
High-resolution x-ray-absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements were performed on the intermediate-valence compound YbAl3 under pressure of up to 38 GPa. The results of the YbAl3 PFY-XAS and RXES studies show that the valence of Yb increases smoothly from 2.75 at ambient pressure to 2.93 at 38 GPa. In situ angle-dispersive synchrotron high-pressure x-ray-diffraction experiments carried out using a diamond cell at room temperature show that the ambient pressure cubic phase is stable up to 40 GPa. The results obtained from self-interaction corrected local spin density-functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results.
View Full Publication open_in_new
Abstract
High-resolution x-ray-absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements were performed on the intermediate-valence compound YbAl3 under pressure of up to 38 GPa. The results of the YbAl3 PFY-XAS and RXES studies show that the valence of Yb increases smoothly from 2.75 at ambient pressure to 2.93 at 38 GPa. In situ angle-dispersive synchrotron high-pressure x-ray-diffraction experiments carried out using a diamond cell at room temperature show that the ambient pressure cubic phase is stable up to 40 GPa. The results obtained from self-interaction corrected local spin density-functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results.
View Full Publication open_in_new
Abstract
The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O-2 molecules interact predominantly through the half-filled 1 pi(g)* orbital < 10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1 pi(g)* orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O-2 molecules at the transition to the E-phase. The E-phase, which consists of (O-2)(4) clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O-2)(4) clusters develop upon compression of the E-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.
View Full Publication open_in_new
Abstract
We present a multitechnique approach to experimentally determine the elastic anisotropy of polycrystalline hcp Fe at high pressure. Directional phonon measurements from inelastic X-ray scattering on a sample with lattice preferred orientation at 52 GPa in a diamond anvil cell were coupled with X-ray diffraction data to determine the elastic tensor. Comparison of the results from this new method with the elasticity determined by lattice strain analysis of radial X-ray diffraction measurements showed significant differences, highlighting the importance of strength anisotropy in hcp Fe. At 52 GPa, we found that a method which combines results from inelastic scattering and pressure-volume measurements gives a shape in the velocity anisotropy close to sigmoidal (with a faster c and slower a axis) a smaller magnitude in the anisotropy and compared to velocities based on the lattice strain method which gives a bell shape velocity distribution with the fast direction between the c and a axes. We used additional results from nuclear resonant inelastic X-ray scattering to constrain errors and provide additional validation of the accuracy of our results.
View Full Publication open_in_new
Abstract
We present a multitechnique approach to experimentally determine the elastic anisotropy of polycrystalline hcp Fe at high pressure. Directional phonon measurements from inelastic X-ray scattering on a sample with lattice preferred orientation at 52 GPa in a diamond anvil cell were coupled with X-ray diffraction data to determine the elastic tensor. Comparison of the results from this new method with the elasticity determined by lattice strain analysis of radial X-ray diffraction measurements showed significant differences, highlighting the importance of strength anisotropy in hcp Fe. At 52 GPa, we found that a method which combines results from inelastic scattering and pressure-volume measurements gives a shape in the velocity anisotropy close to sigmoidal (with a faster c and slower a axis) a smaller magnitude in the anisotropy and compared to velocities based on the lattice strain method which gives a bell shape velocity distribution with the fast direction between the c and a axes. We used additional results from nuclear resonant inelastic X-ray scattering to constrain errors and provide additional validation of the accuracy of our results.
View Full Publication open_in_new
Abstract
Results of x-ray diffraction and nitrogen K-edge x-ray Raman scattering (XRS) investigations of the crystal and electronic structure of ionic compound Li3N across two high-pressure phase transitions [A. Lazicki , Phys. Rev. Lett. 95, 165503 (2005)] are interpreted using density-functional theory. A low-energy peak in the XRS spectrum which is observed in both low-pressure hexagonal phases of Li3N and absent in the high-pressure cubic phase is found to originate from an interlayer band similar to the important free-electron-like state present in the graphite and graphite intercalated systems, but not observed previously in ionic insulators. XRS detection of the interlayer state is made possible because of its strong hybridization with the nitrogen p bands. A pressure-induced increase in the band gap of the high-pressure cubic phase of Li3N is explained by the differing pressure dependencies of different quantum-number bands and is shown to be a feature of several low-Z closed-shell ionic materials.
View Full Publication open_in_new
Abstract
Results of x-ray diffraction and nitrogen K-edge x-ray Raman scattering (XRS) investigations of the crystal and electronic structure of ionic compound Li3N across two high-pressure phase transitions [A. Lazicki , Phys. Rev. Lett. 95, 165503 (2005)] are interpreted using density-functional theory. A low-energy peak in the XRS spectrum which is observed in both low-pressure hexagonal phases of Li3N and absent in the high-pressure cubic phase is found to originate from an interlayer band similar to the important free-electron-like state present in the graphite and graphite intercalated systems, but not observed previously in ionic insulators. XRS detection of the interlayer state is made possible because of its strong hybridization with the nitrogen p bands. A pressure-induced increase in the band gap of the high-pressure cubic phase of Li3N is explained by the differing pressure dependencies of different quantum-number bands and is shown to be a feature of several low-Z closed-shell ionic materials.
View Full Publication open_in_new
Abstract
The phonon density of states (DOS) and phonon entropy of B2 FeAl were determined as functions of the Fe site vacancy concentration using several scattering techniques and were computed from first principles. Measurements at elevated temperature and pressure were performed to explore volume effects, test the usefulness of the quasiharmonic (QH) approximation, and provide comparison for the first-principles calculations. The average temperature and pressure dependencies of phonons were consistent with the QH model. The decrease in specific volume associated with the introduction of vacancies causes a stiffening of the DOS that was captured well with the experimentally determined Gruumlneisen parameter. Features associated with vacancies in the DOS are not well explained by this model, however, especially in the gap between the acoustic and optic branches. First-principles calculations indicated that these modes are primarily associated with vibrations of Al atoms in the first-nearest-neighbor shell of the vacancy, with some vibration amplitude also involving the second-nearest-neighbor Fe atoms. At the vacancy concentrations of study, the phonon entropy of vacancy formation was found to be approximately -1.7k(B)/atom, about half as large and of opposite sign as the configurational entropy of vacancy formation.
View Full Publication open_in_new
Abstract
The phonon density of states (DOS) and phonon entropy of B2 FeAl were determined as functions of the Fe site vacancy concentration using several scattering techniques and were computed from first principles. Measurements at elevated temperature and pressure were performed to explore volume effects, test the usefulness of the quasiharmonic (QH) approximation, and provide comparison for the first-principles calculations. The average temperature and pressure dependencies of phonons were consistent with the QH model. The decrease in specific volume associated with the introduction of vacancies causes a stiffening of the DOS that was captured well with the experimentally determined Gruumlneisen parameter. Features associated with vacancies in the DOS are not well explained by this model, however, especially in the gap between the acoustic and optic branches. First-principles calculations indicated that these modes are primarily associated with vibrations of Al atoms in the first-nearest-neighbor shell of the vacancy, with some vibration amplitude also involving the second-nearest-neighbor Fe atoms. At the vacancy concentrations of study, the phonon entropy of vacancy formation was found to be approximately -1.7k(B)/atom, about half as large and of opposite sign as the configurational entropy of vacancy formation.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 624
  • Page 625
  • Page 626
  • Page 627
  • Current page 628
  • Page 629
  • Page 630
  • Page 631
  • Page 632
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025