Abstract
Three different sodium-silicon clathrate compounds-Na8Si46 (sI), Na24Si136 (sII), and a new structure, NaSi6-were obtained for the first time using high-pressure techniques. Experimental and theoretical results unambiguously indicate that Na-intercalated clathrates are only thermodynamically stable under high-pressure conditions. The sI clathrate can be synthesized directly from the elements at pressures from 2 to 6 GPa in the 900-1100 K range. Over the range of conditions studied, sII clathrate only forms as an intermediate compound prior to the crystallization of sI. At higher pressures, we observed the formation of a new intercalated compound, metallic NaSi6, which crystallizes in the orthorhombic Eu4Ga8Ge16 structure. High-pressure crystallization from Na-Si melts provides significant improvements in the electrical properties of bulk clathrate materials (residual resistance ratio RRR = 24 for sI and > 13 for NaSi6), compared to the typical characteristics achieved for single crystals obtained by conventional routes (RRR < 6). Since the Na-Si clathrates are stable only above 2 GPa, previous reports of their synthesis may be viewed as nonequilibrium, precursor-based routes to high-pressure phases at low-pressure conditions.