Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Aluminous bridgmanite (Al-Bm) is the dominant phase in the Earth's lower mantle. In this study, the Mossbauer spectra of an Al-Bm sample Mg0.868Fe0.087Si0.944Al0.101O2.994 were recorded from 65 to 300 K at 1 bar. The temperature dependence of the center shift was fitted by the Debye model and yielded the Debye temperatures of 305 3 K for Fe2+ and 361 22 K for Fe3+. These values are lower than those of Al-free bridgmanite by 17 and 24%, respectively, indicating that the presence of Fe and Al increases the average Fe-O bond length and weakens the bond strength. At 300 K, the calculated recoil-free fractions of Fe2+ (0.637 +/- 0.006) and Fe3+ (0.72 +/- 0.02) are similar and therefore the molar fractions of Fe2+ and Fe3+ are nearly the same as the area fractions of the corresponding Mossbauer doublets. At 900 K, the calculated recoil-free fractions of Fe3+ is 46% higher than that of Fe2+, implying that the molar fraction of Fe3+ is only 41% for a measured spectral area fraction of 50%, and that the area fractions of iron sites may change with temperature without any changes in the valence state or spin state of iron. We infer that Fe3+ accounts for 46 +/- 2% of the iron in the Al-Bm and it enters the A site along with Al3+ in the B site through the coupled-substitution mechanism. An Fe2+ component with large quadrupole splitting (similar to 4.0 mm/s) was observed at cryogenic conditions and interpreted as a high-spin distorted iron site.
View Full Publication open_in_new
Abstract
We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO3, and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T-c with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO3 should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T-c, the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.
View Full Publication open_in_new
Abstract
The structure of a liquid Fe-3.5wt% C alloy is examined for up to 7.2GPa via multiangle energy-dispersive X-ray diffraction using a Paris-Edinburgh type large-volume press. X-ray diffraction data show clear changes in the pressure-dependent peak positions of structure factor and reduced pair distribution function at 5GPa. These results suggest that the liquid Fe-3.5wt% C alloys change structurally at approximately 5GPa. This finding serves as a microscopic explanation for the alloy's previously observed density change at the same pressure. The pressure dependencies of the nearest and second neighbor distances of the liquid Fe-3.5wt% C alloy are similar to those of liquid Fe which exhibits a structural change near the bcc-fcc-liquid triple point (5.2GPa and 1991K). Similarities between Fe-3.5wt% C and Fe suggest that a density change also occurs in liquid Fe and that this structural change extends to other Fe-light element alloys.
View Full Publication open_in_new
Abstract
We combine high-pressure x-ray diffraction, high-pressure Raman scattering, and optical microscopy to investigate a series of (1 - x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) (PMN-xPT) solid solutions (x = 0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm(-1) starting above 6 GPa for all samples, in agreement with previous observations. X-ray diffraction measurements are consistent with this spectral change indicating a structural phase transition; we find that the triplet at the pseudocubic (220) Bragg peak merges into a doublet above 6 GPa. Our results indicate that the morphotropic phase boundary region (x = 0.33 - 0.37) with the presence of monoclinic symmetry persists up to 7 GPa. The pressure dependence of ferroelectric domains in PMN-0.32PT single crystals was observed using a polarizing optical microscope. The domain wall density decreases with pressure and the domains disappear at a modest pressure of 3 GPa. We propose a pressure-composition phase diagram for PMN-xPT solid solutions. DOI: 10.1103/PhysRevB.86.224111
View Full Publication open_in_new
Abstract
It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GPa using variable-composition evolutionary structure predictions using the USPEX code. We find that Ca5C2, Ca2C, Ca3C2, CaC, Ca2C3 and CaC2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance is the base-centred monoclinic phase (space group C2/m) of Ca2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P2(1)/c) of CaC with zigzag C-4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca5C2 with semi-metallic behaviour.
View Full Publication open_in_new
Abstract
Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the pistoncylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied.
View Full Publication open_in_new
Abstract
Icosahedrite, the first natural quasicrystal with composition Al63Cu24Fe13, was discovered in several grains of the Khatyrka meteorite, a CV3 carbonaceous chondrite. The presence of icosahedrite associated with high-pressure phases like ahrensite and stishovite indicates formation at high pressures and temperatures due to an impact-induced shock. Previous experimental studies on the stability of synthetic icosahedral AlCuFe have either been limited to ambient pressure, for which they indicate incongruent melting at similar to 1123 K, or limited to room-temperature, for which they indicate structural stability up to about 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under the conditions of high pressure and temperature that formed the Khatyrka meteorite. Here we present the results of room-temperature, high-pressure diamond-anvil cells measurements of the compressional behavior of synthetic icosahedrite up to 50 GPa. High P-T experiments were also carried out using both laser-heated diamond-anvil cells combined with in situ synchrotron X-ray diffraction (at 42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic order of icosahedrite is retained over the P-T range explored. We find that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Direct solidification of AlCuFe quasicrystals from an unusual Al-Cu-rich melt is possible but it is limited to a narrow temperature range. Alternatively, quasicrystals may form after crystallization through solid-solid reactions of Al-rich phases. In either case, our results show that quasicrystals can preserve their structure even after hypervelocity impacts spanning a broad range of pressures and temperatures.
View Full Publication open_in_new
Abstract
Compressed hydrogen passes through a series of layered structures in which the layers can be viewed as distorted graphene sheets. The electronic structures of these layered structures can be understood by studying simple model systems-an ideal single hydrogen graphene sheet and three-dimensional model lattices consisting of such sheets. The energetically stable structures result from structural distortions of model graphene-based systems due to electronic instabilities towards Peierls or other distortions associated with the opening of a band gap. Two factors play crucial roles in the metallization of compressed hydrogen: (i) crossing of conduction and valence bands in hexagonal or graphenelike layers due to topology and (ii) formation of bonding states with 2p(z)pi character.
View Full Publication open_in_new
Abstract
We report a synthetic route to mesoporous crystalline aluminosilica materials using high pressure and temperature. In the first step a large-pore periodic mesoporous aluminosilica SBA-15 material was filled with carbon at ambient pressure. We observed that crystallization of the pore walls of periodic mesoporous aluminosilica/carbon composites occurred at 2 GPa and a temperature of 650 degrees C without significant distortion of the mesostructure. Combustive removal of carbon from the crystallized composite in air led to the formation of periodic mesoporous crystalline aluminosilica materials. These materials are steam stable and are resistant to shrinkage under the harsh conditions of hydrothermal treatment at 800 degrees C.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 566
  • Page 567
  • Page 568
  • Page 569
  • Current page 570
  • Page 571
  • Page 572
  • Page 573
  • Page 574
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025