Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Silica (SiO2) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrodinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense alpha-PbO2 structure above the core-insulating D '' layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.
View Full Publication open_in_new
Abstract
Fe3P is a candidate component in planetary cores. We have investigated high-pressure behavior of Fe3P by first-principles calculations and synchrotron X-ray diffraction. Theoretical calculations reveal a magnetic collapse at 40-65 GPa, accompanied by a structural transition. The possible high-pressure polymorph is either a distorted cementite structure (Pnma) or a P4/mnc structure. By combining synchrotron X-ray diffraction and laser-heating diamond anvil cell techniques, we have collected in situ diffraction patterns of Fe3P up to 64 GPa and 1650 K. The high-pressure phase transition from I (4) over bar to P4/mnc structure predicted by the first-principles calculations was confirmed. Discontinuous variations of lattice constants and thermal expansion coefficients with pressure were observed around 17 and 40 GPa, indicating a possible magnetic transition developed in this range, which are in agreement with the calculated results. (c) 2014 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.
View Full Publication open_in_new
Abstract
The efficiency of heat transfer by conduction in the Earth's core controls the dynamics of convection and limits the power available for the geodynamo. We have measured the room temperature electrical resistivity of iron and iron-silicon alloy to 60 GPa and present a new model of the resistivity at high pressures and temperatures relevant to the Earth's core. The model is compared with available shock wave data and theoretical studies. For a power law and linear temperature dependence of electrical resistivity, the calculated thermal conductivity at the core-mantle boundary is similar to 67-145W/m/K for pure Fe and similar to 41-60 W/m/K for Fe-9wt % Si. Impurities in the core have a strong effect on the transport properties of iron that could significantly impact core thermal models. The models describing the data indicate higher thermal conductivity at core pressure than previously suggested, requiring additional energy sources in the past to operate the geodynamo.
View Full Publication open_in_new
Abstract
An initial observation of the formation of WH under pressure from W gaskets surrounding hydrogen in diamond anvil cells led to a theoretical study of tungsten hydride phases. At P = 1 atm no stoichiometry is found to be stable with respect to separation into the elements, but as the pressure is raised WHn (n = 1-6, 8) stoichiometries are metastable or stable. WH and WH4 are calculated to be stable at P > 15 GPa, WH2 becomes stable at P > 100 GPa and WH6 at P > 150 GPa. In agreement with experiment, the structure computed for WH is anti-NiAs. WH2 shares with WH a hexagonal arrangement of tungsten atoms, with hydrogen atoms occupying octahedral and tetrahedral holes. For WH4 the W atoms are in a distorted fcc arrangement. As the number of hydrogens rises, the coordination of W by H increases correspondingly, leading to a twelve-coordinated W in WH6. In WH8 H-2 units also develop. All of the hydrides considered should be metallic at high pressure, though the Fermi levels of WH4 and WH6 lie in a deep pseudogap. Prodded by these theoretical studies, experiments were then undertaken to seek phases other than WH, exploring a variety of experimental conditions that would favor further reaction. Though a better preparation and characterization of WH resulted, no higher hydrides have as yet been found.
View Full Publication open_in_new
Abstract
The first natural-occurring quasicrystal, icosahedrite, was recently discovered in the Khatyrka meteorite, a new CV3 carbonaceous chondrite. Its finding raised fundamental questions regarding the effects of pressure and temperature on the kinetic and thermodynamic stability of the quasicrystal structure relative to possible isochemical crystalline or amorphous phases. Although several studies showed the stability at ambient temperature of synthetic icosahedral AlCuFe up to similar to 35 GPa, the simultaneous effect of temperature and pressure relevant for the formation of icosahedrite has been never investigated so far. Here we present in situ synchrotron X-ray diffraction experiments on synthetic icosahedral AlCuFe using multianvil device to explore possible temperature-induced phase transformations at pressures of 5 GPa and temperature up to 1773 K. Results show the structural stability of i-AlCuFe phase with a negligible effect of pressure on the volumetric thermal expansion properties. In addition, the structural analysis of the recovered sample excludes the transformation of AlCuFe quasicrystalline phase to possible approximant phases, which is in contrast with previous predictions at ambient pressure. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of icosahedrite.
View Full Publication open_in_new
Abstract
We investigate the temperature and pressure dependences of the electrical resistivity, thermal conductivity and thermal diffusivity for bcc and hcp Fe using the low-order variational approximation and theoretical transport spectral functions calculated from the first-principles linear response linear-muffin-tin-orbital method in the generalized gradient approximation. The calculated values for the electrical resistivity show a strong increase with temperature and decrease with pressure, and are in agreement with high-temperature shock data. We also discuss the behavior of the electrical resistivity for the bcc -> hcp phase transition.
View Full Publication open_in_new
Abstract
Three different sodium-silicon clathrate compounds-Na8Si46 (sI), Na24Si136 (sII), and a new structure, NaSi6-were obtained for the first time using high-pressure techniques. Experimental and theoretical results unambiguously indicate that Na-intercalated clathrates are only thermodynamically stable under high-pressure conditions. The sI clathrate can be synthesized directly from the elements at pressures from 2 to 6 GPa in the 900-1100 K range. Over the range of conditions studied, sII clathrate only forms as an intermediate compound prior to the crystallization of sI. At higher pressures, we observed the formation of a new intercalated compound, metallic NaSi6, which crystallizes in the orthorhombic Eu4Ga8Ge16 structure. High-pressure crystallization from Na-Si melts provides significant improvements in the electrical properties of bulk clathrate materials (residual resistance ratio RRR = 24 for sI and > 13 for NaSi6), compared to the typical characteristics achieved for single crystals obtained by conventional routes (RRR < 6). Since the Na-Si clathrates are stable only above 2 GPa, previous reports of their synthesis may be viewed as nonequilibrium, precursor-based routes to high-pressure phases at low-pressure conditions.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 565
  • Page 566
  • Page 567
  • Page 568
  • Current page 569
  • Page 570
  • Page 571
  • Page 572
  • Page 573
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026