Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Hydrogenated carbon nitride is synthesized by polymerization of 1,5-naphthyridine, a nitrogen-containing heteroaromatic compound, under high-pressure and high-temperature conditions. The polymerization progressed significantly at temperatures above 573 K at 0.5 GPa and above 623 K at 1.5 GPa. The reaction temperature was relatively lower than that observed for pure naphthalene, suggesting that the reaction temperature is considerably lowered when nitrogen atoms exist in the aromatic ring structure. The polymerization reaction largely progresses without significant change in the N/C ratio. Three types of dimerization are identified; naphthylation, exact dimerization, and dimerization with hydrogenation as determined from the gas chromatograph-mass spectrometry analysis of soluble products. Infrared spectra suggest that hydrogenation products were likely to be formed with spa carbon and NH bonding. Solid-state C-13 nuclear magnetic resonance reveals that the sp(3)/sp(2) ratio is 0.14 in both the insoluble solids synthesized at 0.5 and 1.5 GPa. Not only the dimers but also soluble heavier oligomers and insoluble polymers formed through more extensive polymerization. The major reaction mechanism of 1,5-Nap was common to both the 0.5 and 1.5 GPa experiments, although the required reaction temperature increased with increasing pressure and aromatic rings preferentially remained at the higher pressure.
View Full Publication open_in_new
Abstract
The insoluble organic material (IOM) in primitive chondritic meteorites is very enriched in D (up to delta D = 3500% in bulk). Based largely on a series of electron paramagnetic resonance (EPR) studies of IOM from three meteorites (Orgueil, Murchison and Tagish Lake), it has been suggested that these enrichments are the result of exchange with H2D+ in the solar nebula and that exchange with radicals in the IOM was particularly facile so that they are enormously enriched in D (dD > 95000%). To try to test whether radicals are largely responsible for the D enrichments in IOM, we have used EPR to measure the radical concentrations (spins/g) and g-factors of 18 IOM separates from C1-2 chondrites of varying petrologic type and chemical group that have a much wider range of H isotopic compositions (dD = 600-3500%) than in previous studies. We confirm the previous studies findings that IOM exhibits non-Curie law behavior and that it does not completely saturate even at microwave excitation powers of 200 mW. We also have obtained similar g-factor values. However, our IOM samples typically exhibit a lower and more limited range of spin concentrations, and smaller deviations from Curie law behavior than in previous studies. Nor do we observe correlations between bulk dD and either spins/g or non-Curie law behavior that would be expected if exchange between H2D+ and radicals, as previously proposed, was the cause of the D-enrichments in IOM. Indeed, in general the radical concentrations and the degree of non-Curie law behavior do not seem to correlate with any of the measured IOM properties, with chondrite group or parent body history (e.g., degree of aqueous alteration). The only exceptions are the IOM in four Tagish Lake lithologies whose spin concentrations increase with increasing degree of thermal processing as indicated by decreasing H/C and dD, and increasing aromaticity. (C) 2021 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
The large variations in hydrogen isotope ratios found in insoluble organic matter (IOM) in chondritic meteorites may be attributed to hydrogen isotopic exchange between IOM and water during aqueous alteration. We conducted D-H exchange experiments (1) during synthesis of IOM simulant (hereafter called chondritic organic analog, COA) from formaldehyde, glycolaldehyde, and ammonia with water, and (2) with the synthesized COA with a secondary reservoir of water. The changes in the D/H ratios obtained by infrared spectra of the COA suggest that most of the hydrogen in the COA is derived from water during synthesis. We further investigated the kinetics of D-H exchange between D-rich COA and D-poor water, as well as the opposite case, D-poor COA and D-rich water. To help assess understanding exchange kinetics, two-dimensional isotope imaging obtained using isotope microscope revealed that no gradient D-H exchange profiles were present in the COA grains, indicating that the rate-limiting step for D-H exchange is not diffusion. Thus, the changes in D/(D + H) ratios were fit by the first-order reaction rate law. Apparent kinetic parameters-the rate constants, the activation energies, and the frequency factors-were obtained with the Arrhenius equation. Using these kinetic expressions, hydrogen isotopic exchange profiles were estimated for time and temperature behavior. The D-H exchange between organic matter and water is apparently relatively fast and this implies that the aqueous alteration temperatures should have been very low, likely close to 0 degrees C to maintain hydrogen isotopic disequilibrium between organic matter and liquid water for millions of years.
View Full Publication open_in_new
Abstract
The interpretation of low-resistivity anomalies in the lithospheric mantle of several cratonic regions has invoked hydrogen, or connected networks of graphite with iron-rich silicates, and/or metal sulfides. Electrical laboratory measurements are a powerful approach for exploring these alternatives. We report electrical measurements of two xenoliths (pyroxenite and dunite) from Tanzania; two metal sulfides (FeS and Fe-S-Ni); and several mixtures of metal sulfides (3.4-18.2 vol.%) with xenolith. A multi-anvil press was employed to maintain a 2 GPa pressure and temperatures up to 1,627 K. The addition of 3.4 vol.% FeS to the pyroxenite or dunite matrix has little effect on bulk resistivity, particularly for T > 800 K. However, the resistivity drops dramatically-by factors of up to 1,000, depending on temperature-upon addition of 6.5 vol.% FeS in the dunite. Addition of 18.2% FeS causes a further decrease of the same magnitude relative to the 6.5% sample. Scanning electron microscope images do not reveal the formation of a connected FeS network as part of the decreased resistivity. Possible explanations for the apparently conflicting results include connections of the sulfide that are not imaged in the back-scattered images, either because of limited resolution, or perhaps the inherent limitations of the 2-D perspective. The complete data set (xenoliths, metal sulfides, and mixtures) was modeled with a modified version of Archie's law, and we find satisfactory agreement over a truncated temperature range. We conclude that the low-resistivity anomalies in Tanzania, Kaapvaal, and Gawler cratons can be explained by the presence of a few vol.% of solid sulfide.
View Full Publication open_in_new
Abstract
The apparent end of the internally generated Martian magnetic field at 3.6-4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present-day areotherm. Third, we consider core thermal conductivity, kc, values in the range 5-40 W m(-1) K-1 as suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range of k(c)=16-35 W m(-1) K-1. Models with an activation volume of 6 (0) cm(3) mol(-1) require a mantle reference viscosity of 10(19)-10(20)(10(20)-10(21)) Pa s.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 503
  • Page 504
  • Page 505
  • Page 506
  • Current page 507
  • Page 508
  • Page 509
  • Page 510
  • Page 511
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025