Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H-2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 degrees C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-mu L solutions of 70-mmolal C-13-labeled formic acid ((HCOOH)-C-13) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in (CH4)-C-13 yields. The pressure effect could be quantified the log-linear slope, Delta log[(CH4)-C-13]/Delta P (log mmolal per kbar). The mean slope was 0.66 +/- 0.05 (+/- 1s.e.), indicating that (CH4)-C-13 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [(CH4)-C-13] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e. g., in cool forearcs or other settings with a steep geothermal gradient. Because the experiments were performed over a limited pressure range, even modest isothermal increases in pressure may substantially enhance CH4 yields. A kinetic pressure effect may be especially important on the deep ocean floors of planetary bodies where pressure may compensate for the otherwise sluggish reaction kinetics expected at low T. (C) 2014 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.
View Full Publication open_in_new
Abstract
Low-dimensional carbon nanomaterials such as fullerenes, nanotubes, graphene and diamondoids have extraordinary physical and chemical properties(1,2). Compression-induced polymerization of aromatic molecules could provide a viable synthetic route to ordered carbon nanomaterials(3,4), but despite almost a century of study(5-9) this approach has produced only amorphous products(10-14). Here we report recovery to ambient pressure of macroscopic quantities of a crystalline one-dimensional sp(3) carbon nanomaterial formed by high-pressure solid-state reaction of benzene. X-ray and neutron diffraction, Raman spectroscopy, solid-state NMR, transmission electron microscopy and first-principles calculations reveal close-packed bundles of subnanometre-diameter sp(3)-bonded carbon threads capped with hydrogen, crystalline in two dimensions and short-range ordered in the third. These nanothreads promise extraordinary properties such as strength and stiffness higher than that of sp(2) carbon nanotubes or conventional high-strength polymers(15). They may be the first member of a new class of ordered sp(3) nanomaterials synthesized by kinetic control of high-pressure solid-state reactions.
View Full Publication open_in_new
Abstract
Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH center dot center dot center dot N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.
View Full Publication open_in_new
Abstract
Primitive xenolithic clasts, often referred to as `` dark clasts", are well known in many regolith breccias. The Sharps H3.4 ordinary chondrite contains unusually large dark clasts up to similar to 1 cm across. Poorly-graphitized carbon (PGC), with Fe, Ni metal and described as `` carbon-rich aggregates", has been reported in these clasts (Brearley, 1990). We report detailed analyses of carbonaceous matter in several identical Sharps clasts using FTIR, Raman, C-XANES, and TEM that provide insight on the extent of thermal processing and possible origin of such clasts. We also prepared acid residues of the clasts using the HCl/HF method and conducted mass spectrometric analysis of the entrained noble gases.
View Full Publication open_in_new
Abstract
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.
View Full Publication open_in_new
Abstract
Hydrothermal systems may have been favorable environments for the evolution of prebiotic chemistry on early Earth due to the presence of chemical, temperature, and redox gradients that could promote the formation of biomolecules. However, the relevance of these environments in origins of life scenarios has been debated due to rapid decomposition of biologically essential species, such as amino acids, at high temperatures. Little is known about the reactivity of amino acids in the presence of mineral surfaces and reducing conditions, which reflect the geochemical complexities of environments such as serpentinite-hosted hydrothermal vents. We investigated the decomposition of 25 mM aspartate at 200 degrees C and 15.5 bars (P-SAT) in gold capsules both with and without brucite [Mg(OH)(2)], a mineral product of serpentinization, and reducing conditions (NH4Cl and H-2(aq)).We observed that the reaction products of aspartate vary significantly with the initial reaction conditions. Fluids containing aspartate only decomposed to fumarate, maleate, malate, acetate, and trace amounts of succinate and glycine. However, under reducing conditions, the main product was succinate (8 mM) and also approximately 1 mM total of the amino acids glycine, alpha-alanine, and beta-alanine. The amount of a-alanine increased three-fold with brucite. Furthermore, we detected a two-fold decrease in the fumarate concentration, whereas total maleate concentration dramatically decreased over ten-fold and resulted in an overall increase in the trans/cis ratio of these deamination products of aspartate from 0.9 to 4.5 as a function of brucite loading. This net decrease in fumarate and maleate concentration and the five-fold increase in the trans/cis ratio might have been caused by a combination of a pH increase and the formation of magnesite due to increased Mg2+ ion concentration. The results of this study provide evidence that the fundamental properties of a hydrothermal system, including mineral assemblages, reducing conditions, and dissolved species concentrations, will influence the fate of amino acids at high temperature.
View Full Publication open_in_new
Abstract
Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyper-branched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine.
View Full Publication open_in_new
Abstract
Over the last several hundred years of scientific progress, we have arrived at a deep understanding of the non-living world. We have not yet achieved an analogous, deep understanding of the living world. The origins of life is our best chance at discovering scientific laws governing life, because it marks the point of departure from the predictable physical and chemical world to the novel, history-dependent living world. This theme issue aims to explore ways to build a deeper understanding of the nature of biology, by modelling the origins of life on a sufficiently abstract level, starting from prebiotic conditions on Earth and possibly on other planets and bridging quantitative frameworks approaching universal aspects of life. The aim of the editors is to stimulate new directions for solving the origins of life. The present introduction represents the point of view of the editors on some of the most promising future directions.
View Full Publication open_in_new
Abstract
Pressure-induced polymerization (PIP) of aromatics is a novel method for constructing sp(3)-carbon frameworks, and nanothreads with diamond-like structures were synthesized by compressing benzene and its derivatives. Here by compressing a benzene-hexafluorobenzene cocrystal (CHCF), H-F-substituted graphane with a layered structure in the PIP product was identified. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by gas chromatography-mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, and leads to a [4+2] polymer, which then transforms to short-range ordered H-F-substituted graphane. The reaction process involves [4+2] Diels-Alder, retro-Diels-Alder, and 1-1' coupling reactions, and the former is the key reaction in the PIP. These studies confirm the elemental reactions of PIP of CHCF for the first time, and provide insight into the PIP of aromatics.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 504
  • Page 505
  • Page 506
  • Page 507
  • Current page 508
  • Page 509
  • Page 510
  • Page 511
  • Page 512
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026