Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present results from a systematic investigation of the X-ray properties of a sample of moderate-redshift (0.3 < z < 0.6) galaxy groups. These groups were selected not by traditional X-ray or optical search methods, but rather by an association, either physical or along the line of sight, with a strong gravitational lens. We calculate the properties of seven galaxy groups in the fields of six lens systems. Diffuse X-ray emission from the intragroup medium is detected in four of the groups. All of the detected groups have X-ray luminosities greater than 10(42) h(-2) ergs s(-1) and lie on the LX-sigma(v) relations defined by local groups and clusters. The upper limits for the nondetections are also consistent with the local LX-sigma(v) relationships. Although the sample size is small and deeper optical and X-ray data are needed, these results suggest that lens-selected groups are similar to X-ray-selected samples and thus are more massive than the typical poor-group environments of local galaxies.
View Full Publication open_in_new
Abstract
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z = 0.4 groups have similar to 5.5 +/- 2 per cent fewer disc-dominated galaxies than the field, while by z = 0.1 this difference has increased to similar to 19 +/- 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 +/- 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z = 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z = 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z = 0.4.
View Full Publication open_in_new
Abstract
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z = 0.4 groups have similar to 5.5 +/- 2 per cent fewer disc-dominated galaxies than the field, while by z = 0.1 this difference has increased to similar to 19 +/- 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 +/- 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z = 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z = 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z = 0.4.
View Full Publication open_in_new
Abstract
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z = 0.4 groups have similar to 5.5 +/- 2 per cent fewer disc-dominated galaxies than the field, while by z = 0.1 this difference has increased to similar to 19 +/- 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 +/- 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z = 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z = 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z = 0.4.
View Full Publication open_in_new
Abstract
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z = 0.4 groups have similar to 5.5 +/- 2 per cent fewer disc-dominated galaxies than the field, while by z = 0.1 this difference has increased to similar to 19 +/- 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 +/- 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z = 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z = 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z = 0.4.
View Full Publication open_in_new
Abstract
Using deep Chandra and optical spectroscopic observations, we investigate an intriguing young massive group, RX J1648.7+6109, at z = 0.376, and we combine these observations with previous measurements to fit the scaling relations of intermediate-redshift groups and poor clusters. RX J1648 appears to be in an early stage of formation; while it follows X-ray scaling relations, its X-ray emission is highly elongated, and it lacks a central, dominant BCG. Instead, RX J1648 contains a central string of seven bright galaxies, which have a smaller velocity dispersion, are on average brighter, and have less star formation [lower EW([O II]) and EW(H delta)] than other group galaxies. The four to five brightest galaxies in this string should sink to the center and merge through dynamical friction by z = 0, forming a BCG consistent with a system of RX J1648's mass even if 5%-50% of the light is lost to an intracluster light component. The L-X-T-X relation for intermediate-redshift groups/poor clusters is very similar to the low-redshift cluster relation and consistent with the low-redshift group relation. In contrast, the L-X-sigma(nu) and sigma(nu)-T-X relations reveal that intermediate-redshift groups/poor clusters have significantly lower velocity dispersions for their X-ray properties compared to low-redshift systems; however, the intermediate-redshift relations are currently limited to a small range in luminosity.
View Full Publication open_in_new
Abstract
Using deep Chandra and optical spectroscopic observations, we investigate an intriguing young massive group, RX J1648.7+6109, at z = 0.376, and we combine these observations with previous measurements to fit the scaling relations of intermediate-redshift groups and poor clusters. RX J1648 appears to be in an early stage of formation; while it follows X-ray scaling relations, its X-ray emission is highly elongated, and it lacks a central, dominant BCG. Instead, RX J1648 contains a central string of seven bright galaxies, which have a smaller velocity dispersion, are on average brighter, and have less star formation [lower EW([O II]) and EW(H delta)] than other group galaxies. The four to five brightest galaxies in this string should sink to the center and merge through dynamical friction by z = 0, forming a BCG consistent with a system of RX J1648's mass even if 5%-50% of the light is lost to an intracluster light component. The L-X-T-X relation for intermediate-redshift groups/poor clusters is very similar to the low-redshift cluster relation and consistent with the low-redshift group relation. In contrast, the L-X-sigma(nu) and sigma(nu)-T-X relations reveal that intermediate-redshift groups/poor clusters have significantly lower velocity dispersions for their X-ray properties compared to low-redshift systems; however, the intermediate-redshift relations are currently limited to a small range in luminosity.
View Full Publication open_in_new
Abstract
Using deep Chandra and optical spectroscopic observations, we investigate an intriguing young massive group, RX J1648.7+6109, at z = 0.376, and we combine these observations with previous measurements to fit the scaling relations of intermediate-redshift groups and poor clusters. RX J1648 appears to be in an early stage of formation; while it follows X-ray scaling relations, its X-ray emission is highly elongated, and it lacks a central, dominant BCG. Instead, RX J1648 contains a central string of seven bright galaxies, which have a smaller velocity dispersion, are on average brighter, and have less star formation [lower EW([O II]) and EW(H delta)] than other group galaxies. The four to five brightest galaxies in this string should sink to the center and merge through dynamical friction by z = 0, forming a BCG consistent with a system of RX J1648's mass even if 5%-50% of the light is lost to an intracluster light component. The L-X-T-X relation for intermediate-redshift groups/poor clusters is very similar to the low-redshift cluster relation and consistent with the low-redshift group relation. In contrast, the L-X-sigma(nu) and sigma(nu)-T-X relations reveal that intermediate-redshift groups/poor clusters have significantly lower velocity dispersions for their X-ray properties compared to low-redshift systems; however, the intermediate-redshift relations are currently limited to a small range in luminosity.
View Full Publication open_in_new
Abstract
Using deep Chandra and optical spectroscopic observations, we investigate an intriguing young massive group, RX J1648.7+6109, at z = 0.376, and we combine these observations with previous measurements to fit the scaling relations of intermediate-redshift groups and poor clusters. RX J1648 appears to be in an early stage of formation; while it follows X-ray scaling relations, its X-ray emission is highly elongated, and it lacks a central, dominant BCG. Instead, RX J1648 contains a central string of seven bright galaxies, which have a smaller velocity dispersion, are on average brighter, and have less star formation [lower EW([O II]) and EW(H delta)] than other group galaxies. The four to five brightest galaxies in this string should sink to the center and merge through dynamical friction by z = 0, forming a BCG consistent with a system of RX J1648's mass even if 5%-50% of the light is lost to an intracluster light component. The L-X-T-X relation for intermediate-redshift groups/poor clusters is very similar to the low-redshift cluster relation and consistent with the low-redshift group relation. In contrast, the L-X-sigma(nu) and sigma(nu)-T-X relations reveal that intermediate-redshift groups/poor clusters have significantly lower velocity dispersions for their X-ray properties compared to low-redshift systems; however, the intermediate-redshift relations are currently limited to a small range in luminosity.
View Full Publication open_in_new
Abstract
The detection and characterization of the afterglow emission and host galaxies of short-hard gamma-ray bursts (SHBs) is one of the most exciting recent astronomical discoveries. In particular, indications that SHB progenitors belong to old stellar populations, in contrast to the long-soft GRBs, provide a strong clue about the physical nature of these systems. Definitive conclusions are currently limited by the small number of SHBs with known hosts available for study. Here, we present our investigation of SHBs previously localized by the interplanetary network (IPN). We show that the brightest galaxy within the error box of SHB 000607, at z = 0.1405, is the probable host galaxy of this event, expanding the sample of SHBs with known hosts and distances. We find a spatial association of the bright SHB 790613 and the cataloged position of the rich galaxy cluster Abell 1892. However, we are unable to verify the reality of this cluster via spectroscopy or multicolor imaging, and we conclude that this association may well be spurious. In addition, we rule out the existence of galaxy overdensities (down to approximate to 21 mag, i.e., approximate to 0.1 L-* at z-0.2) near the locations of two other SHBs and set a lower limit on their probable redshift. We combine our SHB sample with a complete sample of events discovered by the Swift and HETE-2 missions and investigate the properties of the extended sample. We show that the progenitors of SHBs appear to be older than those of Type Ia SNe, on average, suggesting a typical lifetime of several Gyr. The low typical redshift of SHBs leads to a significant increase in the local SHB rate and bodes well for the detection of gravitational radiation from these events, should they result from compact binary mergers, with forthcoming facilities.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 405
  • Page 406
  • Page 407
  • Page 408
  • Current page 409
  • Page 410
  • Page 411
  • Page 412
  • Page 413
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025