Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The low-redshift universe (z similar to 0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation remained unidentified. We present a morphological analysis of galaxies in the optically-selected (spectroscopic friends-of-friends) group and field environments at z similar to 0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed, the S0 fraction in groups is at least as high as in z similar to 0.4 clusters and X-ray-selected groups, which have more luminous intragroup medium (IGM). An excess of S0s at >= 0.3h(75)(-1) Mpc from the group center with respect to the inner regions, existing with 97% confidence at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray-emitting IGM cannot be important for the formation of the majority of S0s in the universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, while the brightest ellipticals are strongly enhanced toward the group centers (greater than 99.999% confidence within >= 0.3h(75)(-1) Mpc). Interestingly, while spirals are altogether less common in groups than in the field, there is also an excess of faint, Sc+ type spirals within >= 0.3h(75)(-1) Mpc of the group centers (99.953% confidence). We conclude that the group and subgroup environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment, and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred preprocessing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.
View Full Publication open_in_new
Abstract
The low-redshift universe (z similar to 0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation remained unidentified. We present a morphological analysis of galaxies in the optically-selected (spectroscopic friends-of-friends) group and field environments at z similar to 0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed, the S0 fraction in groups is at least as high as in z similar to 0.4 clusters and X-ray-selected groups, which have more luminous intragroup medium (IGM). An excess of S0s at >= 0.3h(75)(-1) Mpc from the group center with respect to the inner regions, existing with 97% confidence at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray-emitting IGM cannot be important for the formation of the majority of S0s in the universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, while the brightest ellipticals are strongly enhanced toward the group centers (greater than 99.999% confidence within >= 0.3h(75)(-1) Mpc). Interestingly, while spirals are altogether less common in groups than in the field, there is also an excess of faint, Sc+ type spirals within >= 0.3h(75)(-1) Mpc of the group centers (99.953% confidence). We conclude that the group and subgroup environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment, and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred preprocessing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.
View Full Publication open_in_new
Abstract
The low-redshift universe (z similar to 0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation remained unidentified. We present a morphological analysis of galaxies in the optically-selected (spectroscopic friends-of-friends) group and field environments at z similar to 0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed, the S0 fraction in groups is at least as high as in z similar to 0.4 clusters and X-ray-selected groups, which have more luminous intragroup medium (IGM). An excess of S0s at >= 0.3h(75)(-1) Mpc from the group center with respect to the inner regions, existing with 97% confidence at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray-emitting IGM cannot be important for the formation of the majority of S0s in the universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, while the brightest ellipticals are strongly enhanced toward the group centers (greater than 99.999% confidence within >= 0.3h(75)(-1) Mpc). Interestingly, while spirals are altogether less common in groups than in the field, there is also an excess of faint, Sc+ type spirals within >= 0.3h(75)(-1) Mpc of the group centers (99.953% confidence). We conclude that the group and subgroup environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment, and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred preprocessing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.
View Full Publication open_in_new
Abstract
We report the discovery of a small galaxy system in the vicinity of the Ne VIII absorber at z = 0.20701 toward HE0226 - 4110. The galaxy system consists of two 0.25 L(*) disk galaxies and a 0.05 L(*) galaxy all within Delta v < 300 km s(-1) and rho <= 200 h(-1) physical kpc of the absorber. We consider various scenarios for the origin of the Ne VIII absorption, including photo-ionized gas from an active galactic nucleus, a starburst-driven wind, a hot intragroup medium, hot gas in a galaxy halo, and a conductive front produced by cool clouds moving at high speed through a hot medium. We argue that the conductive front scenario is most likely responsible for producing the Ne VIII feature, because it is consistent with the observed galactic environment around the absorber and because it naturally explains the multi-phase nature of the gas and the kinematic signatures of the absorption profiles. Although our preferred scenario suggests that Ne VIII may not be directly probing the warm-hot intergalactic medium, it does imply the existence of an extended hot confining medium around a disk galaxy that may contain a significant reservoir of baryons in the form of hot gas.
View Full Publication open_in_new
Abstract
We report the discovery of a small galaxy system in the vicinity of the Ne VIII absorber at z = 0.20701 toward HE0226 - 4110. The galaxy system consists of two 0.25 L(*) disk galaxies and a 0.05 L(*) galaxy all within Delta v < 300 km s(-1) and rho <= 200 h(-1) physical kpc of the absorber. We consider various scenarios for the origin of the Ne VIII absorption, including photo-ionized gas from an active galactic nucleus, a starburst-driven wind, a hot intragroup medium, hot gas in a galaxy halo, and a conductive front produced by cool clouds moving at high speed through a hot medium. We argue that the conductive front scenario is most likely responsible for producing the Ne VIII feature, because it is consistent with the observed galactic environment around the absorber and because it naturally explains the multi-phase nature of the gas and the kinematic signatures of the absorption profiles. Although our preferred scenario suggests that Ne VIII may not be directly probing the warm-hot intergalactic medium, it does imply the existence of an extended hot confining medium around a disk galaxy that may contain a significant reservoir of baryons in the form of hot gas.
View Full Publication open_in_new
Abstract
We report the discovery of a small galaxy system in the vicinity of the Ne VIII absorber at z = 0.20701 toward HE0226 - 4110. The galaxy system consists of two 0.25 L(*) disk galaxies and a 0.05 L(*) galaxy all within Delta v < 300 km s(-1) and rho <= 200 h(-1) physical kpc of the absorber. We consider various scenarios for the origin of the Ne VIII absorption, including photo-ionized gas from an active galactic nucleus, a starburst-driven wind, a hot intragroup medium, hot gas in a galaxy halo, and a conductive front produced by cool clouds moving at high speed through a hot medium. We argue that the conductive front scenario is most likely responsible for producing the Ne VIII feature, because it is consistent with the observed galactic environment around the absorber and because it naturally explains the multi-phase nature of the gas and the kinematic signatures of the absorption profiles. Although our preferred scenario suggests that Ne VIII may not be directly probing the warm-hot intergalactic medium, it does imply the existence of an extended hot confining medium around a disk galaxy that may contain a significant reservoir of baryons in the form of hot gas.
View Full Publication open_in_new
Abstract
We report the discovery of a small galaxy system in the vicinity of the Ne VIII absorber at z = 0.20701 toward HE0226 - 4110. The galaxy system consists of two 0.25 L(*) disk galaxies and a 0.05 L(*) galaxy all within Delta v < 300 km s(-1) and rho <= 200 h(-1) physical kpc of the absorber. We consider various scenarios for the origin of the Ne VIII absorption, including photo-ionized gas from an active galactic nucleus, a starburst-driven wind, a hot intragroup medium, hot gas in a galaxy halo, and a conductive front produced by cool clouds moving at high speed through a hot medium. We argue that the conductive front scenario is most likely responsible for producing the Ne VIII feature, because it is consistent with the observed galactic environment around the absorber and because it naturally explains the multi-phase nature of the gas and the kinematic signatures of the absorption profiles. Although our preferred scenario suggests that Ne VIII may not be directly probing the warm-hot intergalactic medium, it does imply the existence of an extended hot confining medium around a disk galaxy that may contain a significant reservoir of baryons in the form of hot gas.
View Full Publication open_in_new
Abstract
We present an imaging and spectroscopic survey of galaxies in fields around QSOs HE 0226-4110, PKS 0405-123, and PG 1216+069. The fields are selected to have ultraviolet echelle spectra available, which uncover 195 Ly alpha absorbers and 13 O VI absorbers along the three sightlines. We obtain robust redshifts for 1104 galaxies of rest-frame absolute magnitude M-R - 5 log h less than or similar to - 16 and at projected physical distances. rho less than or similar to 4 h(-1) Mpc from the QSOs. Hubble Space Telescope (HST)/WFPC2 images of the fields around PKS 0405-123 and PG 1216+069 are available for studying the optical morphologies of absorbing galaxies. Combining the absorber and galaxy data, we perform a cross-correlation study to understand the physical origin of Lya and O VI absorbers and to constrain the properties of extended gas around galaxies. The results of our study are: (1) both strong Ly alpha absorbers of log N(H I) >= 14 and O VI absorbers exhibit a comparable clustering amplitude as emission-line-dominated galaxies and a factor of approximate to 6 weaker amplitude than absorption-line-dominated galaxies on comoving projected distance scales of r(p) < 3 h(-1) Mpc; (2) weak Ly alpha absorbers of log N(H I) < 13.5 appear to cluster very weakly around galaxies; (3) none of the absorption-line-dominated galaxies at r(p) <= 250 h(-1) kpc has a corresponding O VI absorber to a sensitive upper limit of W(1031) less than or similar to 0.03 angstrom, while the covering fraction of O VI absorbing gas around emission-line-dominated galaxies is found to be kappa approximate to 64%; and (4) high-resolution images of five O VI absorbing galaxies show that these galaxies exhibit disk-like morphologies with mildly disturbed features on the edge. Together, the data indicate that O VI absorbers arise preferentially in gas-rich galaxies. In addition, tidal debris in groups/galaxy pairs may be principally responsible for the observed O VI absorbers, particularly those of W(1031) > 70 m angstrom.
View Full Publication open_in_new
Abstract
We present an imaging and spectroscopic survey of galaxies in fields around QSOs HE 0226-4110, PKS 0405-123, and PG 1216+069. The fields are selected to have ultraviolet echelle spectra available, which uncover 195 Ly alpha absorbers and 13 O VI absorbers along the three sightlines. We obtain robust redshifts for 1104 galaxies of rest-frame absolute magnitude M-R - 5 log h less than or similar to - 16 and at projected physical distances. rho less than or similar to 4 h(-1) Mpc from the QSOs. Hubble Space Telescope (HST)/WFPC2 images of the fields around PKS 0405-123 and PG 1216+069 are available for studying the optical morphologies of absorbing galaxies. Combining the absorber and galaxy data, we perform a cross-correlation study to understand the physical origin of Lya and O VI absorbers and to constrain the properties of extended gas around galaxies. The results of our study are: (1) both strong Ly alpha absorbers of log N(H I) >= 14 and O VI absorbers exhibit a comparable clustering amplitude as emission-line-dominated galaxies and a factor of approximate to 6 weaker amplitude than absorption-line-dominated galaxies on comoving projected distance scales of r(p) < 3 h(-1) Mpc; (2) weak Ly alpha absorbers of log N(H I) < 13.5 appear to cluster very weakly around galaxies; (3) none of the absorption-line-dominated galaxies at r(p) <= 250 h(-1) kpc has a corresponding O VI absorber to a sensitive upper limit of W(1031) less than or similar to 0.03 angstrom, while the covering fraction of O VI absorbing gas around emission-line-dominated galaxies is found to be kappa approximate to 64%; and (4) high-resolution images of five O VI absorbing galaxies show that these galaxies exhibit disk-like morphologies with mildly disturbed features on the edge. Together, the data indicate that O VI absorbers arise preferentially in gas-rich galaxies. In addition, tidal debris in groups/galaxy pairs may be principally responsible for the observed O VI absorbers, particularly those of W(1031) > 70 m angstrom.
View Full Publication open_in_new
Abstract
We present an imaging and spectroscopic survey of galaxies in fields around QSOs HE 0226-4110, PKS 0405-123, and PG 1216+069. The fields are selected to have ultraviolet echelle spectra available, which uncover 195 Ly alpha absorbers and 13 O VI absorbers along the three sightlines. We obtain robust redshifts for 1104 galaxies of rest-frame absolute magnitude M-R - 5 log h less than or similar to - 16 and at projected physical distances. rho less than or similar to 4 h(-1) Mpc from the QSOs. Hubble Space Telescope (HST)/WFPC2 images of the fields around PKS 0405-123 and PG 1216+069 are available for studying the optical morphologies of absorbing galaxies. Combining the absorber and galaxy data, we perform a cross-correlation study to understand the physical origin of Lya and O VI absorbers and to constrain the properties of extended gas around galaxies. The results of our study are: (1) both strong Ly alpha absorbers of log N(H I) >= 14 and O VI absorbers exhibit a comparable clustering amplitude as emission-line-dominated galaxies and a factor of approximate to 6 weaker amplitude than absorption-line-dominated galaxies on comoving projected distance scales of r(p) < 3 h(-1) Mpc; (2) weak Ly alpha absorbers of log N(H I) < 13.5 appear to cluster very weakly around galaxies; (3) none of the absorption-line-dominated galaxies at r(p) <= 250 h(-1) kpc has a corresponding O VI absorber to a sensitive upper limit of W(1031) less than or similar to 0.03 angstrom, while the covering fraction of O VI absorbing gas around emission-line-dominated galaxies is found to be kappa approximate to 64%; and (4) high-resolution images of five O VI absorbing galaxies show that these galaxies exhibit disk-like morphologies with mildly disturbed features on the edge. Together, the data indicate that O VI absorbers arise preferentially in gas-rich galaxies. In addition, tidal debris in groups/galaxy pairs may be principally responsible for the observed O VI absorbers, particularly those of W(1031) > 70 m angstrom.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 405
  • Page 406
  • Page 407
  • Page 408
  • Current page 409
  • Page 410
  • Page 411
  • Page 412
  • Page 413
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025