Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
As groups today contain similar to 60% of the galaxy population [1], and are the first step in the hierarchical growth tree which dominates structure formation, these environments must have a critical influence on the evolution of star formation in the Universe as a whole. Indeed their dynamics make them the ideal environments to foster galaxy galaxy interactions and mergers, leading to a dramatic transformation of galaxy properties. To study the evolution of galaxies in groups requires highly complete, targetted, deep spectroscopic surveys. At intermediate redshift, the only such is our sample of 26 groups at 0.3 < z < 0.55, selected from the CNOC2 redshift survey [2], with additional targetted spectroscopy using the Magellan 6.5m and VLT telescopes providing a complete kinematic description to a depth of similar to M-*. + 3 at z = 0.4. [3]. Our full multiwavelength dataset will include HST-ACS, GALEX UV. Chandra, XMM and Spitzer imaging, with the power to ultimately reveal the importance of the group environment in controlling the evolutionary fate of a galaxy. In this contribution, we present some of the more recent and illuminating analysis, revealing evolution in the group environment and the dependence of starformation and galaxy morphologies upon environment and stellar mass. Finally we discuss the important role Spitzer will play in revealing the processes actively transforming galaxies in the group environment.
View Full Publication open_in_new
Abstract
As groups today contain similar to 60% of the galaxy population [1], and are the first step in the hierarchical growth tree which dominates structure formation, these environments must have a critical influence on the evolution of star formation in the Universe as a whole. Indeed their dynamics make them the ideal environments to foster galaxy galaxy interactions and mergers, leading to a dramatic transformation of galaxy properties. To study the evolution of galaxies in groups requires highly complete, targetted, deep spectroscopic surveys. At intermediate redshift, the only such is our sample of 26 groups at 0.3 < z < 0.55, selected from the CNOC2 redshift survey [2], with additional targetted spectroscopy using the Magellan 6.5m and VLT telescopes providing a complete kinematic description to a depth of similar to M-*. + 3 at z = 0.4. [3]. Our full multiwavelength dataset will include HST-ACS, GALEX UV. Chandra, XMM and Spitzer imaging, with the power to ultimately reveal the importance of the group environment in controlling the evolutionary fate of a galaxy. In this contribution, we present some of the more recent and illuminating analysis, revealing evolution in the group environment and the dependence of starformation and galaxy morphologies upon environment and stellar mass. Finally we discuss the important role Spitzer will play in revealing the processes actively transforming galaxies in the group environment.
View Full Publication open_in_new
Abstract
We have obtained near-infrared (NIR) imaging of 58 galaxy groups, in the redshift range 0.1 < z < 0.6, from the William Herschel Telescope and from the Spitzer telescope Infrared Array Camera (IRAC) data archive. The groups are selected from the CNOC2 redshift survey, with additional spectroscopy from the Baade telescope (Magellan). Our group samples are statistically complete to K-Vega = 17.7 (INGRID) and [3.6 mu m](AB) = 19.9 (IRAC). From these data we construct NIR luminosity functions, for groups in bins of velocity dispersion, up to 800 km s(-1), and redshift. The total amount of NIR luminosity per group is compared with the dynamical mass, estimated from the velocity dispersion, to compute the mass-to-light ratio, M-200/L-K. We find that the M-200/L-K values in these groups are in good agreement with those of their statistical descendants at z = 0, with no evidence for evolution beyond that expected for a passively evolving population. There is a trend of M-200/L-K with group mass, which increases from M-200/L-K approximate to 10 for groups with sigma < 250 km s(-1) to M-200/L-K approximate to 100 for 425 km s(-1) < sigma < 800 km s(-1). This trend is weaker, but still present, if we estimate the total mass from weak lensing measurements. In terms of stellar mass, stars make up greater than or similar to 2 per cent of the mass in the smallest groups, and less than or similar to 1 per cent in the most massive groups. We also use the NIR data to consider the correlations between stellar populations and stellar masses, for group and field galaxies at 0.1 < z < 0.6. We find that fewer group galaxies show strong [O (II)] emission, compared with field galaxies of the same stellar mass and at the same redshift. We conclude that most of the stellar mass in these groups was already in place by z similar to 0.4, with little environment-driven evolution to the present day.
View Full Publication open_in_new
Abstract
We have obtained near-infrared (NIR) imaging of 58 galaxy groups, in the redshift range 0.1 < z < 0.6, from the William Herschel Telescope and from the Spitzer telescope Infrared Array Camera (IRAC) data archive. The groups are selected from the CNOC2 redshift survey, with additional spectroscopy from the Baade telescope (Magellan). Our group samples are statistically complete to K-Vega = 17.7 (INGRID) and [3.6 mu m](AB) = 19.9 (IRAC). From these data we construct NIR luminosity functions, for groups in bins of velocity dispersion, up to 800 km s(-1), and redshift. The total amount of NIR luminosity per group is compared with the dynamical mass, estimated from the velocity dispersion, to compute the mass-to-light ratio, M-200/L-K. We find that the M-200/L-K values in these groups are in good agreement with those of their statistical descendants at z = 0, with no evidence for evolution beyond that expected for a passively evolving population. There is a trend of M-200/L-K with group mass, which increases from M-200/L-K approximate to 10 for groups with sigma < 250 km s(-1) to M-200/L-K approximate to 100 for 425 km s(-1) < sigma < 800 km s(-1). This trend is weaker, but still present, if we estimate the total mass from weak lensing measurements. In terms of stellar mass, stars make up greater than or similar to 2 per cent of the mass in the smallest groups, and less than or similar to 1 per cent in the most massive groups. We also use the NIR data to consider the correlations between stellar populations and stellar masses, for group and field galaxies at 0.1 < z < 0.6. We find that fewer group galaxies show strong [O (II)] emission, compared with field galaxies of the same stellar mass and at the same redshift. We conclude that most of the stellar mass in these groups was already in place by z similar to 0.4, with little environment-driven evolution to the present day.
View Full Publication open_in_new
Abstract
We have obtained near-infrared (NIR) imaging of 58 galaxy groups, in the redshift range 0.1 < z < 0.6, from the William Herschel Telescope and from the Spitzer telescope Infrared Array Camera (IRAC) data archive. The groups are selected from the CNOC2 redshift survey, with additional spectroscopy from the Baade telescope (Magellan). Our group samples are statistically complete to K-Vega = 17.7 (INGRID) and [3.6 mu m](AB) = 19.9 (IRAC). From these data we construct NIR luminosity functions, for groups in bins of velocity dispersion, up to 800 km s(-1), and redshift. The total amount of NIR luminosity per group is compared with the dynamical mass, estimated from the velocity dispersion, to compute the mass-to-light ratio, M-200/L-K. We find that the M-200/L-K values in these groups are in good agreement with those of their statistical descendants at z = 0, with no evidence for evolution beyond that expected for a passively evolving population. There is a trend of M-200/L-K with group mass, which increases from M-200/L-K approximate to 10 for groups with sigma < 250 km s(-1) to M-200/L-K approximate to 100 for 425 km s(-1) < sigma < 800 km s(-1). This trend is weaker, but still present, if we estimate the total mass from weak lensing measurements. In terms of stellar mass, stars make up greater than or similar to 2 per cent of the mass in the smallest groups, and less than or similar to 1 per cent in the most massive groups. We also use the NIR data to consider the correlations between stellar populations and stellar masses, for group and field galaxies at 0.1 < z < 0.6. We find that fewer group galaxies show strong [O (II)] emission, compared with field galaxies of the same stellar mass and at the same redshift. We conclude that most of the stellar mass in these groups was already in place by z similar to 0.4, with little environment-driven evolution to the present day.
View Full Publication open_in_new
Abstract
We have obtained near-infrared (NIR) imaging of 58 galaxy groups, in the redshift range 0.1 < z < 0.6, from the William Herschel Telescope and from the Spitzer telescope Infrared Array Camera (IRAC) data archive. The groups are selected from the CNOC2 redshift survey, with additional spectroscopy from the Baade telescope (Magellan). Our group samples are statistically complete to K-Vega = 17.7 (INGRID) and [3.6 mu m](AB) = 19.9 (IRAC). From these data we construct NIR luminosity functions, for groups in bins of velocity dispersion, up to 800 km s(-1), and redshift. The total amount of NIR luminosity per group is compared with the dynamical mass, estimated from the velocity dispersion, to compute the mass-to-light ratio, M-200/L-K. We find that the M-200/L-K values in these groups are in good agreement with those of their statistical descendants at z = 0, with no evidence for evolution beyond that expected for a passively evolving population. There is a trend of M-200/L-K with group mass, which increases from M-200/L-K approximate to 10 for groups with sigma < 250 km s(-1) to M-200/L-K approximate to 100 for 425 km s(-1) < sigma < 800 km s(-1). This trend is weaker, but still present, if we estimate the total mass from weak lensing measurements. In terms of stellar mass, stars make up greater than or similar to 2 per cent of the mass in the smallest groups, and less than or similar to 1 per cent in the most massive groups. We also use the NIR data to consider the correlations between stellar populations and stellar masses, for group and field galaxies at 0.1 < z < 0.6. We find that fewer group galaxies show strong [O (II)] emission, compared with field galaxies of the same stellar mass and at the same redshift. We conclude that most of the stellar mass in these groups was already in place by z similar to 0.4, with little environment-driven evolution to the present day.
View Full Publication open_in_new
Abstract
We investigate the galaxy populations in seven X-ray-selected, intermediate-redshift groups (0.2 < z < 0.6). Overall, the galaxy populations in these systems are similar to those in clusters at the same redshift; they have large fractions of early-type galaxies (f(e)similar to 70%) and small fractions of galaxies with significant star formation (f ([OII])similar to 30%). We do not observe a strong evolution in the galaxy populations from those seen in X-ray-luminous groups at low redshift. Both f(e) and f ([OII]) are correlated with radius but do not reach the field value out to similar to r(500). However, we find significant variation in the galaxy populations between groups, with some groups having fieldlike populations. Comparisons between the morphological and spectral properties of group galaxies reveal both gas-poor mergers and a population of passive spirals. Unlike low-redshift, X-ray-emitting groups, in some of these groups the brightest galaxy does not lie at the center of the X-ray emission, and in several of the groups that do have a central BGG, the BGG has multiple components. These groups appear to represent a range of evolutionary stages in the formation of the BGG. Some groups have relatively large central galaxy densities, and one group contains a string of seven bright galaxies within a radius of 200 kpc that have a lower velocity dispersion than the rest of the system. None of the central galaxies, including those with multiple components, have significant ([O II]) emission. These observations support a scenario in which BGGs are formed relatively late through gas-poor mergers.
View Full Publication open_in_new
Abstract
We investigate the galaxy populations in seven X-ray-selected, intermediate-redshift groups (0.2 < z < 0.6). Overall, the galaxy populations in these systems are similar to those in clusters at the same redshift; they have large fractions of early-type galaxies (f(e)similar to 70%) and small fractions of galaxies with significant star formation (f ([OII])similar to 30%). We do not observe a strong evolution in the galaxy populations from those seen in X-ray-luminous groups at low redshift. Both f(e) and f ([OII]) are correlated with radius but do not reach the field value out to similar to r(500). However, we find significant variation in the galaxy populations between groups, with some groups having fieldlike populations. Comparisons between the morphological and spectral properties of group galaxies reveal both gas-poor mergers and a population of passive spirals. Unlike low-redshift, X-ray-emitting groups, in some of these groups the brightest galaxy does not lie at the center of the X-ray emission, and in several of the groups that do have a central BGG, the BGG has multiple components. These groups appear to represent a range of evolutionary stages in the formation of the BGG. Some groups have relatively large central galaxy densities, and one group contains a string of seven bright galaxies within a radius of 200 kpc that have a lower velocity dispersion than the rest of the system. None of the central galaxies, including those with multiple components, have significant ([O II]) emission. These observations support a scenario in which BGGs are formed relatively late through gas-poor mergers.
View Full Publication open_in_new
Abstract
We investigate the galaxy populations in seven X-ray-selected, intermediate-redshift groups (0.2 < z < 0.6). Overall, the galaxy populations in these systems are similar to those in clusters at the same redshift; they have large fractions of early-type galaxies (f(e)similar to 70%) and small fractions of galaxies with significant star formation (f ([OII])similar to 30%). We do not observe a strong evolution in the galaxy populations from those seen in X-ray-luminous groups at low redshift. Both f(e) and f ([OII]) are correlated with radius but do not reach the field value out to similar to r(500). However, we find significant variation in the galaxy populations between groups, with some groups having fieldlike populations. Comparisons between the morphological and spectral properties of group galaxies reveal both gas-poor mergers and a population of passive spirals. Unlike low-redshift, X-ray-emitting groups, in some of these groups the brightest galaxy does not lie at the center of the X-ray emission, and in several of the groups that do have a central BGG, the BGG has multiple components. These groups appear to represent a range of evolutionary stages in the formation of the BGG. Some groups have relatively large central galaxy densities, and one group contains a string of seven bright galaxies within a radius of 200 kpc that have a lower velocity dispersion than the rest of the system. None of the central galaxies, including those with multiple components, have significant ([O II]) emission. These observations support a scenario in which BGGs are formed relatively late through gas-poor mergers.
View Full Publication open_in_new
Abstract
We investigate the galaxy populations in seven X-ray-selected, intermediate-redshift groups (0.2 < z < 0.6). Overall, the galaxy populations in these systems are similar to those in clusters at the same redshift; they have large fractions of early-type galaxies (f(e)similar to 70%) and small fractions of galaxies with significant star formation (f ([OII])similar to 30%). We do not observe a strong evolution in the galaxy populations from those seen in X-ray-luminous groups at low redshift. Both f(e) and f ([OII]) are correlated with radius but do not reach the field value out to similar to r(500). However, we find significant variation in the galaxy populations between groups, with some groups having fieldlike populations. Comparisons between the morphological and spectral properties of group galaxies reveal both gas-poor mergers and a population of passive spirals. Unlike low-redshift, X-ray-emitting groups, in some of these groups the brightest galaxy does not lie at the center of the X-ray emission, and in several of the groups that do have a central BGG, the BGG has multiple components. These groups appear to represent a range of evolutionary stages in the formation of the BGG. Some groups have relatively large central galaxy densities, and one group contains a string of seven bright galaxies within a radius of 200 kpc that have a lower velocity dispersion than the rest of the system. None of the central galaxies, including those with multiple components, have significant ([O II]) emission. These observations support a scenario in which BGGs are formed relatively late through gas-poor mergers.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 403
  • Page 404
  • Page 405
  • Page 406
  • Current page 407
  • Page 408
  • Page 409
  • Page 410
  • Page 411
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026