Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present spectroscopic confirmation of nine moderate-redshift galaxy groups and poor clusters selected from the ROSAT Deep Cluster Survey. The groups span the redshift range z similar to 0.23 - 0.59 and have between 4 and 20 confirmed members. The velocity dispersions of these groups range from similar to 125 to 650 km s(-1). Similar to X-ray groups at low redshift, these systems contain a significant number of early-type galaxies. Therefore, the trend for X-ray-luminous groups to have high early-type fractions is already in place by at least z similar to 0.5. In four of the nine groups, the X-ray emission is clearly peaked on themost luminous early-type galaxy in the group. However, in several cases the central galaxy is composed of multiple luminous nuclei, suggesting that the brightest group galaxy may still be undergoing major mergers. In at least three (and possibly five) of the groups in our sample, a dominant early-type galaxy is not found at the center of the group potential. This suggests that many of our groups are not dynamically evolved despite their high X-ray luminosities. While similar systems have been identified at low redshift, the X-ray luminosities of the intermediate-redshift examples are 1-3 orders of magnitude higher than those of their low-redshift counterparts. We suggest that this may be evidence for group downsizing: while massive groups are still in the process of collapsing and virializing at intermediate redshifts, only low-mass groups are in the process of forming at the present day.
View Full Publication open_in_new
Abstract
We present spectroscopic confirmation of nine moderate-redshift galaxy groups and poor clusters selected from the ROSAT Deep Cluster Survey. The groups span the redshift range z similar to 0.23 - 0.59 and have between 4 and 20 confirmed members. The velocity dispersions of these groups range from similar to 125 to 650 km s(-1). Similar to X-ray groups at low redshift, these systems contain a significant number of early-type galaxies. Therefore, the trend for X-ray-luminous groups to have high early-type fractions is already in place by at least z similar to 0.5. In four of the nine groups, the X-ray emission is clearly peaked on themost luminous early-type galaxy in the group. However, in several cases the central galaxy is composed of multiple luminous nuclei, suggesting that the brightest group galaxy may still be undergoing major mergers. In at least three (and possibly five) of the groups in our sample, a dominant early-type galaxy is not found at the center of the group potential. This suggests that many of our groups are not dynamically evolved despite their high X-ray luminosities. While similar systems have been identified at low redshift, the X-ray luminosities of the intermediate-redshift examples are 1-3 orders of magnitude higher than those of their low-redshift counterparts. We suggest that this may be evidence for group downsizing: while massive groups are still in the process of collapsing and virializing at intermediate redshifts, only low-mass groups are in the process of forming at the present day.
View Full Publication open_in_new
Abstract
Ram-pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium (IGM) and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low surface brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the IGM at a velocity similar to 850 km s(-1). Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass-loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing H I measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass-loss rate of similar to 5 M-circle dot yr(-1), the galaxy could be losing its entire present H I supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot IGM can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.
View Full Publication open_in_new
Abstract
Ram-pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium (IGM) and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low surface brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the IGM at a velocity similar to 850 km s(-1). Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass-loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing H I measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass-loss rate of similar to 5 M-circle dot yr(-1), the galaxy could be losing its entire present H I supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot IGM can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.
View Full Publication open_in_new
Abstract
Ram-pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium (IGM) and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low surface brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the IGM at a velocity similar to 850 km s(-1). Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass-loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing H I measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass-loss rate of similar to 5 M-circle dot yr(-1), the galaxy could be losing its entire present H I supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot IGM can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.
View Full Publication open_in_new
Abstract
We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, recently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e., a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10(10) M-circle dot, and the tidal debris reach the surface brightness of mu(R) similar to 27 mag arcsec(-2). Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in elliptical galaxies at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.
View Full Publication open_in_new
Abstract
We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, recently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e., a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10(10) M-circle dot, and the tidal debris reach the surface brightness of mu(R) similar to 27 mag arcsec(-2). Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in elliptical galaxies at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.
View Full Publication open_in_new
Abstract
We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, recently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e., a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10(10) M-circle dot, and the tidal debris reach the surface brightness of mu(R) similar to 27 mag arcsec(-2). Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in elliptical galaxies at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.
View Full Publication open_in_new
Abstract
We have undertaken a multiwavelength project to study the relatively unknown properties of groups and poor clusters of galaxies at intermediate redshifts. In this paper, we describe the XMM-Newton observations of six X-ray selected groups with 0.2 < z < 0: 6. The X-ray properties of these systems are generally in good agreement with the properties of low-redshift groups. They appear to follow the scaling relations between luminosity, temperature, and velocity dispersion defined by low-redshift groups and clusters. The X-ray emission in four of the six groups is also centered on a dominant early-type galaxy. The lack of a bright elliptical galaxy at the peak of the group X-ray emission is rare at low redshifts, and the other two groups may be less dynamically evolved. We find indications of excess entropy in these systems over self-similar predictions out to large radii. We also confirm the presence of at least one X-ray-luminous AGN associated with a group member galaxy and find several other potential group AGNs.
View Full Publication open_in_new
Abstract
We have undertaken a multiwavelength project to study the relatively unknown properties of groups and poor clusters of galaxies at intermediate redshifts. In this paper, we describe the XMM-Newton observations of six X-ray selected groups with 0.2 < z < 0: 6. The X-ray properties of these systems are generally in good agreement with the properties of low-redshift groups. They appear to follow the scaling relations between luminosity, temperature, and velocity dispersion defined by low-redshift groups and clusters. The X-ray emission in four of the six groups is also centered on a dominant early-type galaxy. The lack of a bright elliptical galaxy at the peak of the group X-ray emission is rare at low redshifts, and the other two groups may be less dynamically evolved. We find indications of excess entropy in these systems over self-similar predictions out to large radii. We also confirm the presence of at least one X-ray-luminous AGN associated with a group member galaxy and find several other potential group AGNs.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 399
  • Page 400
  • Page 401
  • Page 402
  • Current page 403
  • Page 404
  • Page 405
  • Page 406
  • Page 407
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025