Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Images from the night of 2025 SC79’s discovery showing its motion relative to background stars. Photographs courtesy of Scott S. Sheppard.
    Breaking News
    October 16, 2025

    Fast-moving asteroid found in Sun’s glare

    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case, with many measuring slopes flatter than the cluster relation. Examining the group L(X)-sigma relation shows that much of the flattening is caused by a small subset of groups that show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (similar to30%-40%) point-source contamination but confirm that a significant hot intergalactic medium is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity is correspondingly high for its temperature when compared with most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.
View Full Publication open_in_new
Abstract
Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case, with many measuring slopes flatter than the cluster relation. Examining the group L(X)-sigma relation shows that much of the flattening is caused by a small subset of groups that show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (similar to30%-40%) point-source contamination but confirm that a significant hot intergalactic medium is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity is correspondingly high for its temperature when compared with most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.
View Full Publication open_in_new
Abstract
We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O II]lambda 3727 emission (>= 5 angstrom) increases strongly with redshift, from similar to 29 per cent in 2dFGRS to 58 per cent in CNOC2, for all galaxies brighter than similar to M-* + 1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from similar to 53 to similar to 75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P-trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P-trunc greater than or similar to 0.3 Gyr(-1)). However, without assuming significant density evolution, P-trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z greater than or similar to 0.45.
View Full Publication open_in_new
Abstract
We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O II]lambda 3727 emission (>= 5 angstrom) increases strongly with redshift, from similar to 29 per cent in 2dFGRS to 58 per cent in CNOC2, for all galaxies brighter than similar to M-* + 1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from similar to 53 to similar to 75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P-trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P-trunc greater than or similar to 0.3 Gyr(-1)). However, without assuming significant density evolution, P-trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z greater than or similar to 0.45.
View Full Publication open_in_new
Abstract
We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O II]lambda 3727 emission (>= 5 angstrom) increases strongly with redshift, from similar to 29 per cent in 2dFGRS to 58 per cent in CNOC2, for all galaxies brighter than similar to M-* + 1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from similar to 53 to similar to 75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P-trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P-trunc greater than or similar to 0.3 Gyr(-1)). However, without assuming significant density evolution, P-trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z greater than or similar to 0.45.
View Full Publication open_in_new
Abstract
We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O II]lambda 3727 emission (>= 5 angstrom) increases strongly with redshift, from similar to 29 per cent in 2dFGRS to 58 per cent in CNOC2, for all galaxies brighter than similar to M-* + 1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from similar to 53 to similar to 75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P-trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P-trunc greater than or similar to 0.3 Gyr(-1)). However, without assuming significant density evolution, P-trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z greater than or similar to 0.45.
View Full Publication open_in_new
Abstract
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between z = 1 and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift (z similar to 0.4). The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than M-BJ < -20 in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.
View Full Publication open_in_new
Abstract
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between z = 1 and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift (z similar to 0.4). The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than M-BJ < -20 in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.
View Full Publication open_in_new
Abstract
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between z = 1 and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift (z similar to 0.4). The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than M-BJ < -20 in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.
View Full Publication open_in_new
Abstract
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between z = 1 and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift (z similar to 0.4). The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than M-BJ < -20 in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 397
  • Page 398
  • Page 399
  • Page 400
  • Current page 401
  • Page 402
  • Page 403
  • Page 404
  • Page 405
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025