Abstract
We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O II]lambda 3727 emission (>= 5 angstrom) increases strongly with redshift, from similar to 29 per cent in 2dFGRS to 58 per cent in CNOC2, for all galaxies brighter than similar to M-* + 1.75. This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from similar to 53 to similar to 75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation (P-trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers (P-trunc greater than or similar to 0.3 Gyr(-1)). However, without assuming significant density evolution, P-trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts z greater than or similar to 0.45.