Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present Keck/NIRSPEC near-IR images and Magellan/IMACS optical spectroscopy of the host galaxy of GRB 031203. The host is an actively star-forming galaxy at z=0.1055+/-0.0001. This is the lowest redshift GRB to date, aside from GRB 980425. From the hydrogen Balmer lines, we infer an extinction of A(V)=3.62+/-0.25 or a total reddening E-T (B-V)=1.17+/-0.1 toward the sight line to the nebular regions. After correcting for reddening, we perform an emission-line analysis and derive an ISM temperature of T =13400+/-2000 K and electron density of n(e)=300 cm(-3). These imply a metallicity [O/H]=-0.72+/-0.15 dex and a roughly solar abundance pattern for N, Ne, S, and Ar. Integrating Halpha, we infer a dust-corrected star formation rate (SFR) of more than 11 M-circle dot yr(-1). These observations have the following implications: (1) The galaxy has a low K'-band luminosity Lapproximate toL*(K)/5, typical of GRB host galaxies. (2) The low redshift indicates GRB 031203 had an isotropic-equivalent gamma-ray energy release smaller than all previous confirmed GRB events. The burst discovery raises the likelihood of identifying many additional low-z, low-flux events with Swift. (3) The large SFR, low metallicity, and inferred hard radiation field are suggestive of massive star formation, supporting the collapsar model. (4) Several lines of evidence argue against the identification of GRB 031203 as an X-ray flash event.
View Full Publication open_in_new
Abstract
We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (t < days) joined with published GCN data indicate a steepening decay, approaching F(v) proportional to t(-0.6) at early times (t << day) and at late times. The break at days is the earliest reported jet break among all GRB afterglows. During our first night, we obtained 39 exposures spanning 2.15 hr from 0.62 to 0.71 days after the burst that reveal a smooth afterglow, with an rms deviation of 0.024 mag from the local power-law fit, consistent with photometric errors. After days, the decay slows considerably, and the light curve remains approximately flat at mag t similar to 4 R similar to 24 for a month before decaying by another magnitude to reach mag 2 months after the burst. This "bump" is R similar to 25 well fit by a k-corrected light curve of supernova SN 1998bw, but only if stretched by a factor of 1.38 in time. In comparison with the other GRB-related SN bumps, GRB 041006 stakes out new parameter space for GRBs/SNe, with a very bright and significantly stretched late-time SN light curve. Within a small sample of fairly well observed GRB/SN bumps, we see a hint of a possible correlation between their peak luminosity and their "stretch factor," broadly similar to the well-studied Phillips relation for the Type Ia supernovae.
View Full Publication open_in_new
Abstract
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempet 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass to gas mass in the ejecta was much larger than before impact; (iii) the new activity did not last more than a few days, and by 9 July the comet's behavior was indistinguishable from its pre-impact behavior; and (iv) there were interesting transient phenomena that may be correlated with cratering physics.
View Full Publication open_in_new
Abstract
We present an analysis of Hapke photometric modeling applied to uniform ground-based UBVRIJHK broadband data of asteroid 25143 Itokawa collected over a wide range of solar phase angles (4 degrees-130 degrees) during the 2004 apparition (Thomas-Osip et al., this issue, hereafter Paper 1). Our photometric analyses indicate that Itokawa has a blocky surface with properties different from other, albeit larger, S-class asteroids studied using similar Hapke modeling analyses. Images from the Hayabusa spacecraft affirm the Hapke modeling results, demonstrating the ability of Hapke photometric modeling to predict a rocky asteroid surface correctly; this is the first time that a predicted rocky surface has been observed by a spacecraft. The single particle scattering functions are dominantly forward scattering, suggesting the surface material is composed primarily of clear particles whose scattering is dictated by the particle's surface as opposed to internal scatterers (more typical of S-class asteroids), while the opposition parameters indicate that the regolith may be more compact than most of the limited number of asteroids visited by spacecraft to date. The roughness properties, single particle scattering properties, and opposition surge characteristics are all indicative of a surface where multiple scattering does not play a major role in defining the photometric properties of the regolith.
View Full Publication open_in_new
Abstract
In 2004, Asteroid 25143 Itokawa made its final close approach to the Earth prior to its encounter with the Japanese spacecraft Hayabusa. This apparition was superb with Itokawa reaching magnitude 12 (two magnitudes brighter than the 2001 apparition and the brightest since its discovery in 1998) and covering a large range of observable solar phase angles. An extensive visible and near-infrared observing campaign of Itokawa was undertaken at Las Campanas and Lowell Observatories to obtain full rotational coverage and cover the largest possible range of solar phase angles (4-129 degrees). Unresolved global color mapping over the complete light curve (best fit synodic period of 12.118 hr) shows no sign of rotational color variability with upper limits of a few percent across the full U-thru-K spectrum. These combined multi-wavelength (UBVRIJHK) rotational light curves allow for the concrete deconvolution of shape from albedo variation in the rotational models and as required for Hapke modeling presented in Paper II (Lederer et al., this issue), permits the removal of the rotational light curve effects from the solar phase curve. Furthermore, these derived solar phase curves can be fit with the IAU H,G magnitude system (Bowell et al., 1989) thus allowing the calculation of geometric albedos (p(v) = 0.23 +/- 0.02) as well as an estimate of the asteroid's elongated shape (a/b = 1.9 +/- 0.1) via the amplitude-phase relationtionship (Zappala et al., 1990). Results derived from the extensive ground-based campaigns are compared and contrasted with the much higher spatial resolution in situ measurements made by the Hayabusa spacecraft. The 'ground-truth' provided by the Hayabusa mission results shed light on the inferences that can begin to be made for the general asteroid population.
View Full Publication open_in_new
Abstract
This paper describes the Maryland-Magellan Tunable Filter (MMTF) on the Magellan-Baade 6.5 m telescope. MMTF is based on a 150 mm clear aperture Fabry-Perot (FP) etalon that operates in low orders and provides transmission bandpass and central wavelength adjustable from similar to 5 angstrom to similar to 15 angstrom and from similar to 5000 angstrom to over similar to 9200 angstrom, respectively. It is installed in the Inamori Magellan Areal Camera and Spectrograph and delivers an image quality of similar to 0.'' 5 over a field of view of 27' in diameter (monochromatic over similar to 10'). This versatile and easy-to-operate instrument has been used over the past three years for a wide variety of projects. This paper first reviews the basic principles of FP tunable filters, and then provides a detailed description of the hardware and software associated with MMTF and the techniques developed to observe with this instrument and reduce the data. The main lessons learned in the course of the commissioning and implementation of MMTF are highlighted next, before concluding with a brief outlook on the future of MMTF and of similar facilities which are soon coming on line.
View Full Publication open_in_new
Abstract
The Magellan Baade and Clay telescopes regularly produce images of similar to 0.5 '' in natural seeing. We review efforts to improve collimation, active optics response, and telescope guiding and pointing to optimize the performance of the telescopes. Procedures have been developed to monitor and analyze image quality delivered by the imaging science instruments. Improved models have been developed to correct for flexure of the telescope and primary mirror under gravity loading. Collimation has been improved using a "two-probe" Shack-Hartman technique to measure field aberrations. Field acquisition performance has been improved by implementing an open loop model for the primary mirror control. Telescope pointing has been improved by regular monitoring and adjustments to improve acquisition times.
View Full Publication open_in_new
Abstract
We present six new transits of the exoplanet OGLE-TR-111b observed with the Magellan Telescopes in Chile between 2008 April and 2009 March. We combine these new transits with five previously published transit epochs for this planet between 2005 and 2006 to extend the analysis of transit timing variations (TTVs) reported for this system. We derive a new planetary radius value of 1.019 +/- 0.026 R-J, which is intermediate to the previously reported radii of 1.067 +/- 0.054 R-J and 0.922 +/- 0.057 R-J. We also examine the TTV and duration change claims of Diaz et al. Our analysis of all 11 transit epochs does not reveal any points with deviations larger than 2 sigma, and most points are well within 1 sigma. Although the transit duration nominally decreases over the four year span of the data, systematic errors in the photometry can account for this result. Therefore, there is no compelling evidence for either a timing or a duration variation in this system. Numerical integrations place an upper limit of about 1 M-circle plus on the mass of a potential second planet in a 2:1 mean-motion resonance with OGLE-TR-111b.
View Full Publication open_in_new
Abstract
We present six new transits of the hot Jupiter OGLE-TR-113b observed with MagIC on the Magellan Telescopes between 2007 January and 2009 May. We update the system parameters and revise the planetary radius to R-p = 1.084 +/- 0.029 R-J, where the error is dominated by stellar radius uncertainties. The new transit midtimes reveal no transit timing variations from a constant ephemeris of greater than 13 +/- 28 s over two years, placing an upper limit of 1-2 M-circle plus on the mass of any perturber in a 1:2 or 2:1 mean-motion resonance with OGLE-TR-113b. Combining the new transit epochs with five epochs published between 2002 and 2006, we find hints that the orbital period of the planet may not be constant, with the best fit indicating a decrease of (P) over dot = -60 +/- 15 ms yr(-1). If real, this change in period could result from either a long-period (more than eight years) timing variation due to a massive external perturber or more intriguingly from the orbital decay of the planet. The detection of a changing period is still tentative and requires additional observations, but if confirmed it would enable direct tests of tidal stability and dynamical models of close-in planets.
View Full Publication open_in_new
Abstract
Although OGLE-TR-56b was the second transiting exoplanet discovered, only one light curve, observed in 2006, has been published besides the discovery data. We present 21 light curves of 19 different transits observed between 2003 July and 2009 July with the Magellan Telescopes and Gemini South. The combined analysis of the new light curves confirms a slightly inflated planetary radius relative to model predictions, with R(p) = 1.378 +/- 0.090 R(J). However, the values found for the transit duration, semimajor axis, and inclination values differ significantly from the previous result, likely due to systematic errors. The new semimajor axis and inclination, a = 0.01942 +/- 0.00015 AU and i = 73.degrees 72 +/- 0.degrees 18, are smaller than previously reported, while the total duration, T(14) = 7931 +/- 38 s, is 18 minutes longer. The transit midtimes have errors from 23 s to several minutes, and no evidence is seen for transit midtime or duration variations. Similarly, no change is seen in the orbital period, implying a nominal stellar tidal decay factor of Q(*) = 107, with a 3 sigma lower limit of 10(5.7).
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 393
  • Page 394
  • Page 395
  • Page 396
  • Current page 397
  • Page 398
  • Page 399
  • Page 400
  • Page 401
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025