Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present the first mid-IR study of galaxy groups in the nearby universe based on Spitzer MIPS observations of a sample of nine redshift-selected groups from the XMM-IMACS project, at z = 0.06. We find that on average the star-forming (SF) galaxy fraction in the groups is about 30% lower than the value in the field and 30% higher than in clusters. The SF fractions do not show any systematic dependence on group velocity dispersion, total stellar mass, or the presence of an X-ray emitting intragroup medium, but a weak anti-correlation is seen between SF fraction and projected galaxy density. However, even in the densest regions, the SF fraction in groups is still higher than that in cluster outskirts, suggesting that preprocessing of galaxies in group environments is not sufficient to explain the much lower SF fraction in clusters. The typical specific star formation rates (SFRs/M(*)) of SF galaxies in groups are similar to those in the field across a wide range of stellar mass (M(*) > 10(9.6) M(circle dot)), favoring a quickly acting mechanism that suppresses star formation to explain the overall smaller fraction of SF galaxies in groups. If galaxy -galaxy interactions are responsible, then the extremely low starburst galaxy fraction (<1%) implies a short timescale (similar to 0.1 Gyr) for any merger-induced starburst stage. Comparison to two rich clusters shows that clusters contain a population of massive SF galaxies with very low SFR (14% of all the galaxies with M(*) > 10(10) M(circle dot)), possibly as a consequence of ram pressure stripping being less efficient in removing gas frommoremassive galaxies.
View Full Publication open_in_new
Abstract
We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L(X)-L(K) relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L(K) less than or similar to L(star) suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L(K) less than or similar to L(star) galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.
View Full Publication open_in_new
Abstract
We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L(X)-L(K) relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L(K) less than or similar to L(star) suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L(K) less than or similar to L(star) galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.
View Full Publication open_in_new
Abstract
We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L(X)-L(K) relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L(K) less than or similar to L(star) suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L(K) less than or similar to L(star) galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.
View Full Publication open_in_new
Abstract
We introduce our survey of galaxy groups at 0.85 < z < 1, as an extension of the Group Environment and Evolution Collaboration. Here we present the first results, based on Gemini GMOS-S nod-and-shuffle spectroscopy of seven galaxy groups selected from spectroscopically confirmed, extended XMM detections in COSMOS. We use photometric redshifts to select potential group members for spectroscopy, and target galaxies with r < 24.75. In total, we have over 100 confirmed group members, and four of the groups have > 15 members. The dynamical mass estimates are in good agreement with the masses estimated from the X-ray luminosity, with most of the groups having 13 < log M-dyn/M-circle dot < 14. We compute stellar masses by template-fitting the spectral energy distributions; our spectroscopic sample is statistically complete for all galaxies with M-star greater than or similar to 1010.1 M-circle dot, and for blue galaxies we sample masses as low as M-star similar to 108.8 M-circle dot. The fraction of total mass in galaxy starlight spans a range of 0.25-3 per cent, for the six groups with reliable mass determinations. Like lower redshift groups, these systems are dominated by red galaxies, at all stellar masses M-star > 1010.1 M-circle dot. A few group galaxies inhabit the 'blue cloud' that dominates the surrounding field; instead, we find a large and possibly distinct population of galaxies with intermediate colours. The 'green valley' that exists at low redshift is instead well populated in these groups, containing similar to 30 per cent of the galaxies. These do not appear to be exceptionally dusty galaxies, and about half show prominent Balmer absorption lines. Furthermore, their Hubble Space Telescope morphologies appear to be intermediate between those of red-sequence and blue-cloud galaxies of the same stellar mass. Unlike red-sequence galaxies, most of the green galaxies have a disc component, but one that is smaller and less structured than discs found in the blue cloud. We postulate that these are a transient population, migrating from the blue cloud to the red sequence, with a star formation rate that declines with an exponential time-scale 0.6 < tau < 2 Gyr. Such galaxies may not be exclusive to the group environment, as we find examples also amongst the non-members. However, their prominence among the group galaxy population, and the marked lack of blue, star-forming galaxies, provides evidence that the group environment either directly reduces star formation in member galaxies or at least prevents its rejuvenation during the normal cycle of galaxy evolution.
View Full Publication open_in_new
Abstract
We introduce our survey of galaxy groups at 0.85 < z < 1, as an extension of the Group Environment and Evolution Collaboration. Here we present the first results, based on Gemini GMOS-S nod-and-shuffle spectroscopy of seven galaxy groups selected from spectroscopically confirmed, extended XMM detections in COSMOS. We use photometric redshifts to select potential group members for spectroscopy, and target galaxies with r < 24.75. In total, we have over 100 confirmed group members, and four of the groups have > 15 members. The dynamical mass estimates are in good agreement with the masses estimated from the X-ray luminosity, with most of the groups having 13 < log M-dyn/M-circle dot < 14. We compute stellar masses by template-fitting the spectral energy distributions; our spectroscopic sample is statistically complete for all galaxies with M-star greater than or similar to 1010.1 M-circle dot, and for blue galaxies we sample masses as low as M-star similar to 108.8 M-circle dot. The fraction of total mass in galaxy starlight spans a range of 0.25-3 per cent, for the six groups with reliable mass determinations. Like lower redshift groups, these systems are dominated by red galaxies, at all stellar masses M-star > 1010.1 M-circle dot. A few group galaxies inhabit the 'blue cloud' that dominates the surrounding field; instead, we find a large and possibly distinct population of galaxies with intermediate colours. The 'green valley' that exists at low redshift is instead well populated in these groups, containing similar to 30 per cent of the galaxies. These do not appear to be exceptionally dusty galaxies, and about half show prominent Balmer absorption lines. Furthermore, their Hubble Space Telescope morphologies appear to be intermediate between those of red-sequence and blue-cloud galaxies of the same stellar mass. Unlike red-sequence galaxies, most of the green galaxies have a disc component, but one that is smaller and less structured than discs found in the blue cloud. We postulate that these are a transient population, migrating from the blue cloud to the red sequence, with a star formation rate that declines with an exponential time-scale 0.6 < tau < 2 Gyr. Such galaxies may not be exclusive to the group environment, as we find examples also amongst the non-members. However, their prominence among the group galaxy population, and the marked lack of blue, star-forming galaxies, provides evidence that the group environment either directly reduces star formation in member galaxies or at least prevents its rejuvenation during the normal cycle of galaxy evolution.
View Full Publication open_in_new
Abstract
We examine the star formation properties of group and field galaxies in two surveys, Sloan Digital Sky Survey (at z similar to 0.08) and Group Environment Evolution Collaboration (GEEC; at z similar to 0.4). Using ultraviolet imaging from the Galaxy Evolution Explorer space telescope, along with optical and, for GEEC, near-infrared photometry, we compare the observed spectral energy distributions to large suites of stellar population synthesis models. This allows us to accurately determine star formation rates and stellar masses. We find that star-forming galaxies of all environments undergo a systematic lowering of their star formation rate between z = 0.4 and 0.08 regardless of mass. None the less, the fraction of passive galaxies is higher in groups than the field at both redshifts. Moreover, the difference between the group and field grows with time and is mass dependent, in the sense the difference is larger at low masses. However, the star formation properties of star-forming galaxies, as measured by their average specific star formation rates, are consistent within the errors in the group and field environment at fixed redshift. The evolution of passive fraction in groups between z = 0.4 and 0 is consistent with a simple accretion model, in which galaxies are environmentally affected 3 Gyr after falling into a similar to 1013 M-circle dot group. This long time-scale appears to be inconsistent with the need to transform galaxies quickly enough to ensure that star-forming galaxies appear similar in both the group and field, as observed.
View Full Publication open_in_new
Abstract
We examine the star formation properties of group and field galaxies in two surveys, Sloan Digital Sky Survey (at z similar to 0.08) and Group Environment Evolution Collaboration (GEEC; at z similar to 0.4). Using ultraviolet imaging from the Galaxy Evolution Explorer space telescope, along with optical and, for GEEC, near-infrared photometry, we compare the observed spectral energy distributions to large suites of stellar population synthesis models. This allows us to accurately determine star formation rates and stellar masses. We find that star-forming galaxies of all environments undergo a systematic lowering of their star formation rate between z = 0.4 and 0.08 regardless of mass. None the less, the fraction of passive galaxies is higher in groups than the field at both redshifts. Moreover, the difference between the group and field grows with time and is mass dependent, in the sense the difference is larger at low masses. However, the star formation properties of star-forming galaxies, as measured by their average specific star formation rates, are consistent within the errors in the group and field environment at fixed redshift. The evolution of passive fraction in groups between z = 0.4 and 0 is consistent with a simple accretion model, in which galaxies are environmentally affected 3 Gyr after falling into a similar to 1013 M-circle dot group. This long time-scale appears to be inconsistent with the need to transform galaxies quickly enough to ensure that star-forming galaxies appear similar in both the group and field, as observed.
View Full Publication open_in_new
Abstract
We examine the star formation properties of group and field galaxies in two surveys, Sloan Digital Sky Survey (at z similar to 0.08) and Group Environment Evolution Collaboration (GEEC; at z similar to 0.4). Using ultraviolet imaging from the Galaxy Evolution Explorer space telescope, along with optical and, for GEEC, near-infrared photometry, we compare the observed spectral energy distributions to large suites of stellar population synthesis models. This allows us to accurately determine star formation rates and stellar masses. We find that star-forming galaxies of all environments undergo a systematic lowering of their star formation rate between z = 0.4 and 0.08 regardless of mass. None the less, the fraction of passive galaxies is higher in groups than the field at both redshifts. Moreover, the difference between the group and field grows with time and is mass dependent, in the sense the difference is larger at low masses. However, the star formation properties of star-forming galaxies, as measured by their average specific star formation rates, are consistent within the errors in the group and field environment at fixed redshift. The evolution of passive fraction in groups between z = 0.4 and 0 is consistent with a simple accretion model, in which galaxies are environmentally affected 3 Gyr after falling into a similar to 1013 M-circle dot group. This long time-scale appears to be inconsistent with the need to transform galaxies quickly enough to ensure that star-forming galaxies appear similar in both the group and field, as observed.
View Full Publication open_in_new
Abstract
Galaxy star formation rates (SFRs) are sensitive to the local environment; for example, the high-density regions at the cores of dense clusters are known to suppress star formation. It has been suggested that galaxy transformation occurs largely in groups, which are the intermediate step in density between field and cluster environments. In this paper, we use deep MIPS 24 mu m observations of intermediate-redshift (0.3 less than or similar to z less than or similar to 0.55) group and field galaxies from the Group Environment and Evolution Collaboration (GEEC) subset of the Second Canadian Network for Observational Cosmology (CNOC2) survey to probe the moderate-density environment of groups, wherein the majority of galaxies are found. The completeness limit of our study is log(L-TIR(L-circle dot)) greater than or similar to 10.5, corresponding to SFR greater than or similar to 2.7 M-circle dot yr(-1). We find that the group and field galaxies have different distributions of morphologies and mass. However, individual group galaxies have star-forming properties comparable to those of field galaxies of similar mass and morphology; that is, the group environment does not appear to modify the properties of these galaxies directly. There is a relatively large number of massive early-type group spirals, along with E/S0 galaxies, that are forming stars above our detection limit. These galaxies account for the nearly comparable level of star-forming activity in groups as compared with the field, despite the differences in mass and morphology distributions between the two environments. The distribution of specific SFRs (SFR/M-*) is shifted to lower values in the groups, reflecting the fact that groups contain a higher proportion of massive and less active galaxies. Considering the distributions of morphology, mass, and SFR, the group members appear to lie between field and cluster galaxies in overall properties.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 408
  • Page 409
  • Page 410
  • Page 411
  • Current page 412
  • Page 413
  • Page 414
  • Page 415
  • Page 416
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025