Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present deep Gemini Multi-Object Spectrograph-South spectroscopy for 11 galaxy groups at 0.8 < z < 1.0, for galaxies with r(AB) < 24.75. Our sample is highly complete (> 66 per cent) for eight of the 11 groups. Using an optical-near-infrared colour-colour diagram, the galaxies in the sample were separated with a dust insensitive method into three categories: passive (red), star-forming (blue) and intermediate (green). The strongest environmental dependence is observed in the fraction of passive galaxies, which make up only similar to 20 per cent of the field in the mass range 10(10.3) < M-star/M-circle dot < 10(11.0), but are the dominant component of groups. If we assume that the properties of the field are similar to those of the 'pre-accreted' population, the environment quenching efficiency (is an element of(rho)) is defined as the fraction of field galaxies required to be quenched in order to match the observed red fraction inside groups. The efficiency obtained is similar to 0.4, similar to its value in intermediate-density environments locally. While green (intermediate) galaxies represent similar to 20 per cent of the star-forming population in both the group and field, at all stellar masses, the average specific star formation rate of the group population is lower by a factor of similar to 3. The green population does not show strong H delta absorption that is characteristic of starburst galaxies. Finally, the high fraction of passive galaxies in groups, when combined with satellite accretion models, require that most accreted galaxies have been affected by their environment. Thus, any delay between accretion and the onset of truncation of star formation (tau) must be <= 2 Gyr, shorter than the 3-7 Gyr required to fit data at z = 0. The relatively small fraction of intermediate galaxies require that the actual quenching process occurs quickly, with an exponential decay time-scale of tau(q) <= 1Gyr.
View Full Publication open_in_new
Abstract
We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 deg(2) surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for similar to 10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.
View Full Publication open_in_new
Abstract
We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 deg(2) surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for similar to 10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.
View Full Publication open_in_new
Abstract
We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 deg(2) surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for similar to 10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.
View Full Publication open_in_new
Abstract
We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 deg(2) surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for similar to 10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.
View Full Publication open_in_new
Abstract
We examine galaxy groups from the present epoch to z similar to 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of similar to 10(13)-10(14.5) M-circle dot, or with dynamical state. However, at z similar to 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log(10)(M-star/M-circle dot) less than or similar to 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z similar to 0.4, while the amount of detected substructure remains constant to z similar to 1. Based on these results, we conclude that for massive galaxies [log(10)(M-star/M-circle dot) greater than or similar to 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution.
View Full Publication open_in_new
Abstract
We examine galaxy groups from the present epoch to z similar to 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of similar to 10(13)-10(14.5) M-circle dot, or with dynamical state. However, at z similar to 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log(10)(M-star/M-circle dot) less than or similar to 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z similar to 0.4, while the amount of detected substructure remains constant to z similar to 1. Based on these results, we conclude that for massive galaxies [log(10)(M-star/M-circle dot) greater than or similar to 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution.
View Full Publication open_in_new
Abstract
We examine galaxy groups from the present epoch to z similar to 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of similar to 10(13)-10(14.5) M-circle dot, or with dynamical state. However, at z similar to 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log(10)(M-star/M-circle dot) less than or similar to 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z similar to 0.4, while the amount of detected substructure remains constant to z similar to 1. Based on these results, we conclude that for massive galaxies [log(10)(M-star/M-circle dot) greater than or similar to 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution.
View Full Publication open_in_new
Abstract
We examine galaxy groups from the present epoch to z similar to 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of similar to 10(13)-10(14.5) M-circle dot, or with dynamical state. However, at z similar to 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log(10)(M-star/M-circle dot) less than or similar to 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z similar to 0.4, while the amount of detected substructure remains constant to z similar to 1. Based on these results, we conclude that for massive galaxies [log(10)(M-star/M-circle dot) greater than or similar to 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution.
View Full Publication open_in_new
Abstract
We present new absorption-line analysis and new galaxy survey data obtained for the field around PKS 0405-123 at z(QSO) = 0.57. Combining previously known O vi absorbers with new identifications in the higher S/N ultraviolet (UV) spectra obtained with the Cosmic Origins Spectrograph, we have established a sample of 7 O vi absorbers and 12 individual components at z = 0.0918-0.495 along the sightline towards PKS 0405-123. We complement the available UV absorption spectra with galaxy survey data that reach 100 per cent completeness at projected distances < 200 kpc of the quasar sightline for galaxies as faint as 0.1 L-* (0.2 L-*) out to redshifts of z approximate to 0.35 (z approximate to 0.5). The high level of completeness achieved at faint magnitudes by our survey reveals that O vi absorbers are closely associated with gas-rich environments containing at least one low-mass, emission-line galaxy. An intriguing exception is a strong O vi system at z approximate to 0.183 that does not have a galaxy found at < 4 Mpc, and our survey rules out the presence of any galaxies of L > 0.04 L-* at < 250 kpc and any galaxies of L > 0.3 L-* at < 1 Mpc. We further examine the galactic environments of O vi absorbers and those 'Ly alpha-only' absorbers with neutral hydrogen column density log N(Hi < 13.6 and no detectable O vi absorption features. The Ly alpha-only absorbers serve as a control sample in seeking the discriminating galactic features that result in the observed O vi absorbing gas at large galactic radii. We find a clear distinction in the radial profiles of mean galaxy surface brightness around different absorbers. Specifically, O vi absorbers are found to reside in regions of higher mean surface brightness at less than or similar to 500 kpc (delta mu(R) approximate to +5 mag Mpc(-2) relative to the background at > 500 kpc), while only a mild increase in galaxy surface brightness is seen at small around Ly alpha-only absorbers (delta mu(R) approximate to +2 mag Mpc(-2)). The additional insights gained from our deep galaxy survey demonstrate the need to probe the galaxy populations to low luminosities in order to better understand the nature of the absorbing systems.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 412
  • Page 413
  • Page 414
  • Page 415
  • Current page 416
  • Page 417
  • Page 418
  • Page 419
  • Page 420
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025