Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present a study of extended galaxy halo gas through H I and O VI absorption over two decades in projected distance at z approximate to 0.2. The study is based on a sample of 95 galaxies from a highly complete (> 80 per cent) survey of faint galaxies (L > 0.1L(*)) with archival quasar absorption spectra and 53 galaxies from the literature. A clear anticorrelation is found between H I (O VI) column density and virial radius normalized projected distance, d/R-h. Strong H I (O VI) absorption systems with column densities greater than 10(14.0) (10(13.5)) cm(-2) are found for 48 of 54 (36 of 42) galaxies at d < R-h indicating a mean covering fraction of = 0.89 ( = 0.86). O VI absorbers are found at d approximate to R-h, beyond the extent observed for lower ionization species. At d/R-h = 1-3 strong H I (O VI) absorption systems are found for only 7 of 43 (5 of 34) galaxies ( = 0.16 and = 0.15). Beyond d = 3 R-h, the H I and O VI covering fractions decrease to levels consistent with coincidental systems. The high completeness of the galaxy survey enables an investigation of environmental dependence of extended gas properties. Galaxies with nearby neighbours exhibit a modest increase in O VI covering fraction at d > R-h compared to isolated galaxies (kappa(O) (VI) approximate to 0.13 versus 0.04) but no excess H I absorption. These findings suggest that environmental effects play a role in distributing heavy elements beyond the enriched gaseous haloes of individual galaxies. Finally, we find that differential H I and O VI absorption between early-and late-type galaxies continues from d < R-h to d approximate to 3 R-h.
View Full Publication open_in_new
Abstract
We present a study of extended galaxy halo gas through H I and O VI absorption over two decades in projected distance at z approximate to 0.2. The study is based on a sample of 95 galaxies from a highly complete (> 80 per cent) survey of faint galaxies (L > 0.1L(*)) with archival quasar absorption spectra and 53 galaxies from the literature. A clear anticorrelation is found between H I (O VI) column density and virial radius normalized projected distance, d/R-h. Strong H I (O VI) absorption systems with column densities greater than 10(14.0) (10(13.5)) cm(-2) are found for 48 of 54 (36 of 42) galaxies at d < R-h indicating a mean covering fraction of = 0.89 ( = 0.86). O VI absorbers are found at d approximate to R-h, beyond the extent observed for lower ionization species. At d/R-h = 1-3 strong H I (O VI) absorption systems are found for only 7 of 43 (5 of 34) galaxies ( = 0.16 and = 0.15). Beyond d = 3 R-h, the H I and O VI covering fractions decrease to levels consistent with coincidental systems. The high completeness of the galaxy survey enables an investigation of environmental dependence of extended gas properties. Galaxies with nearby neighbours exhibit a modest increase in O VI covering fraction at d > R-h compared to isolated galaxies (kappa(O) (VI) approximate to 0.13 versus 0.04) but no excess H I absorption. These findings suggest that environmental effects play a role in distributing heavy elements beyond the enriched gaseous haloes of individual galaxies. Finally, we find that differential H I and O VI absorption between early-and late-type galaxies continues from d < R-h to d approximate to 3 R-h.
View Full Publication open_in_new
Abstract
Aims. We present the detection, identification and calibration of extended sources in the deepest X-ray dataset to date, the Extended Chandra Deep Field South (ECDF-S).
View Full Publication open_in_new
Abstract
Aims. We present the detection, identification and calibration of extended sources in the deepest X-ray dataset to date, the Extended Chandra Deep Field South (ECDF-S).
View Full Publication open_in_new
Abstract
Aims. We present the detection, identification and calibration of extended sources in the deepest X-ray dataset to date, the Extended Chandra Deep Field South (ECDF-S).
View Full Publication open_in_new
Abstract
Previous observations of quasar host haloes at z approximate to 2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z approximate to 1 with constraints on chemically enriched, cool gas traced by MgII absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from L-bol = 10(44.4) to 10(46.8) erg s(-1) and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z approximate to 2. Moreover, 30-40 per cent of the Mg II absorption occurs at radial velocities of vertical bar Delta nu vertical bar > 300 km s(-1) from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.
View Full Publication open_in_new
Abstract
Previous observations of quasar host haloes at z approximate to 2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z approximate to 1 with constraints on chemically enriched, cool gas traced by MgII absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from L-bol = 10(44.4) to 10(46.8) erg s(-1) and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z approximate to 2. Moreover, 30-40 per cent of the Mg II absorption occurs at radial velocities of vertical bar Delta nu vertical bar > 300 km s(-1) from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.
View Full Publication open_in_new
Abstract
Previous observations of quasar host haloes at z approximate to 2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z approximate to 1 with constraints on chemically enriched, cool gas traced by MgII absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from L-bol = 10(44.4) to 10(46.8) erg s(-1) and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z approximate to 2. Moreover, 30-40 per cent of the Mg II absorption occurs at radial velocities of vertical bar Delta nu vertical bar > 300 km s(-1) from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.
View Full Publication open_in_new
Abstract
Previous observations of quasar host haloes at z approximate to 2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z approximate to 1 with constraints on chemically enriched, cool gas traced by MgII absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from L-bol = 10(44.4) to 10(46.8) erg s(-1) and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z approximate to 2. Moreover, 30-40 per cent of the Mg II absorption occurs at radial velocities of vertical bar Delta nu vertical bar > 300 km s(-1) from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.
View Full Publication open_in_new
Abstract
Using data from four deep fields (COSMOS, AEGIS, ECDFS, and CDFN), we study the correlation between the position of galaxies in the star formation rate (SFR) versus stellar mass plane and local environment at z < 1.1. To accurately estimate the galaxy SFR, we use the deepest available Spitzer/MIPS 24 and Herschel/PACS data sets. We distinguish group environments (M-halo similar to 10(12.5-14.2)M(circle dot)) based on the available deep X-ray data and lower halo mass environments based on the local galaxy density. We confirm that the main sequence (MS) of star-forming galaxies is not a linear relation and there is a flattening towards higher stellar masses (M-* > 10(10.4-10.6) M-circle dot), across all environments. At high redshift (0.5 < z < 1.1), the MS varies little with environment. At low redshift (0.15 < z < 0.5), group galaxies tend to deviate from the mean MS towards the region of quiescence with respect to isolated galaxies and less-dense environments. We find that the flattening of the MS towards low SFR is due to an increased fraction of bulge-dominated galaxies at high masses. Instead, the deviation of group galaxies from the MS at low redshift is caused by a large fraction of red disc-dominated galaxies which are not present in the lower density environments. Our results suggest that above a mass threshold (similar to 10(10.4)-10(10.6) M-circle dot) stellar mass, morphology and environment act together in driving the evolution of the star formation activity towards lower level. The presence of a dominating bulge and the associated quenching processes are already in place beyond z similar to 1. The environmental effects appear, instead, at lower redshifts and have a long time-scale.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 416
  • Page 417
  • Page 418
  • Page 419
  • Current page 420
  • Page 421
  • Page 422
  • Page 423
  • Page 424
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025