Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of similar to 430 ks, allow the gas density to be detected beyond R-200 and the gas temperature out to 0.75 R-200. This represents the first observational measurement of the physical properties of a poor groups beyond R-500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R-200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.
View Full Publication open_in_new
Abstract
With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 <= z <= 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r < 100 kpc could originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 10(10.0) M-circle dot galaxy and that 75 per cent of the total BCG+ICL luminosity at r < 100 kpc is consistent with originating in galaxies with L > 0.2 L* (log(M-* [M-circle dot])> 10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.
View Full Publication open_in_new
Abstract
As an evolutionary phase of galaxies, active galactic nuclei (AGNs) over a large range of redshifts have been utilized for understanding cosmic evolution. In particular, the population and evolution of AGNs have been investigated through the study of the cosmic X-ray background in various fields. As one of the deep fields observed by Chandra, with a total of 2.8 Ms exposures, Abell 133 is a special region for investigating AGNs, providing a testbed for probing the environmental effects on AGN triggers, since cluster environments can be different from field environments. The achieved flux limits of data at the 50%. completeness levels of 6.95 x 10(-16), 1.43 x 10(-16), and 1.57 x 10(-15) erg s(-1) cm(-2) are 0.5-8, 0.5-2, and 2-8 keV. Using the wavdetect and no-source binomial probability (i.e., p < 0.007), we analyze the combined Chandra image, detecting 1617 (in 0.5-8 keV), 1324 (in 0.5-2 keV), and 1028 (in 2-8 keV) X-ray point sources in the Abell 133 region. Here, we present the X-ray point source catalog with the source fluxes, which can be combined with multiwavelength data for future works. We find that the number count distribution of the X-ray point sources is well reproduced with a broken power-law model, while the best-fit model parameters are sensitive to the fitting range of the number count distribution. Finally, we find an excess of number density (a decrease of AGN fraction) at the central region of the cluster, which reflects the effect of dense environments on AGN triggers, a finding similar to those of other studies of galaxy clusters.
View Full Publication open_in_new
Abstract
We report the discovery of six spatially extended (10-100 kpc) line-emitting nebulae in the z approximate to 0.57 galaxy group hosting PKS 0405-123, one of the most luminous quasars at z < 1. The discovery is enabled by the Multi Unit Spectroscopic Explorer and provides tantalizing evidence connecting large-scale gas streams with nuclear activity on scales of <10 proper kpc (pkpc). One of the nebulae exhibits a narrow, filamentary morphology extending over 50 pkpc toward the quasar with narrow internal velocity dispersion (50 km s(-1)) and is not associated with any detected galaxies, consistent with a cool intragroup medium filament. Two of the nebulae are 10 pkpc north and south of the quasar with tidal-arm-like morphologies. These two nebulae, along with a continuum-emitting arm extending 60 pkpc from the quasar, are signatures of interactions that are expected to redistribute angular momentum in the host interstellar medium (ISM) to facilitate star formation and quasar fueling in the nucleus. The three remaining nebulae are among the largest and most luminous [O III] emitting "blobs" known (1400-2400 pkpc(2)) and correspond both kinematically and morphologically to interacting galaxy pairs in the quasar host group, consistent with arising from stripped ISM rather than large-scale quasar outflows. The presence of these large- and small-scale nebulae in the vicinity of a luminous quasar bears significantly on the effect of large-scale environment on galaxy and black hole fueling, providing a natural explanation for the previously known correlation between quasar luminosity and cool circumgalactic medium.
View Full Publication open_in_new
Abstract
In the local universe, a large fraction of the baryon content is believed to exist as diffuse gas in filaments. While this gas is directly observable in X-ray emission around clusters of galaxies, it is primarily studied through its UV absorption. Recently, X-ray observations of large-scale filaments connecting to the cosmic web around the nearby (z = 0.05584) cluster A133 were reported. One of these filaments is intersected by the sightline to quasar [VV98] J010250.2-220929, allowing for a first-ever census of cold, cool, and warm gas in a filament of the cosmic web where hot gas has been seen in X-ray emission. Here, we present UV observations with the Cosmic Origins Spectrograph and optical observations with the Magellan Echellette spectrograph of [VV98] J010250.2-220929. We find no evidence of cold, cool, or warm gas associated with the filament. In particular, we set a 2 sigma upper limit on Ly alpha absorption of log(N-H (I)/cm(-2)) < 13.7, assuming a Doppler parameter of b = 20 km s(-1). As this sightline is similar to 1100 pkpc (0.7R(vir)) from the center of A133, we suggest that all gas in the filament is hot at this location, or that any warm, cool, or cold components are small and clumpy. A broader census of this system-combining more UV sightlines, deeper X-ray observations, and a larger redshift catalog of cluster members-is needed to better understand the roles of filaments around clusters.
View Full Publication open_in_new
Abstract
We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG + ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05-1.75 and masses of M-500,M-c = 2 x 10(13)-10(15) M-circle dot. Specifically, we measure the relationship between the BCG + ICL stellar mass M-star and M-500,M-c at projected radii 10 < r < 100 kpc for three different epochs. At intermediate redshift ((z) over bar = 0.40), where we have the best data, we find M-star M-500,c(0.48 +/- 0.06). Fixing the exponent of this power law for all redshifts, we constrain the normalization of this relation to be 2.08 +/- 0.21 times higher at (z) over bar = 0.40 than at high redshift ((z) over bar = 1.55). We find no change in the relation from intermediate to low redshift ((z) over bar = 0.10). In other words, for fixed M-500,M-c, M-star at 10 < r < 100 kpc increases from (z) over bar = 1.55 to (z) over bar = 0.40 and not significantly thereafter. Theoretical models predict that the physical mass growth of the cluster from z = 1.5 to z = 0 within r(500,c) is 1.4x, excluding evolution due to definition of r(500,c). We find that M-star within the central 100 kpc increases by similar to 3.8x over the same period. Thus, the growth of M-star in this central region is more than a factor of 2 greater than the physical mass growth of the cluster as a whole. Furthermore, the concentration of the BCG + ICL stellar mass, defined by the ratio of stellar mass within 10 kpc to the total stellar mass within 100 kpc, decreases with increasing M-500,M-c at all z. We interpret this result as evidence for inside-out growth of the BCG + ICL over the past 10 Gyr, with stellar mass assembly occurring at larger radii at later times.
View Full Publication open_in_new
Abstract
The relationship between galaxies and the state/chemical enrichment of the warm-hot intergalactic medium (WHIM) expected to dominate the baryon budget at low-z provides sensitive constraints on structure formation and galaxy evolution models. We present a deep redshift survey in the field of 1ES1553+113, a blazar with a unique combination of ultraviolet (UV)+X-ray spectra for surveys of the circumgalactic/intergalactic medium (CGM/IGM). Nicastro et al. reported the detection of two O VII WHIM absorbers at z = 0.4339 and 0.3551 in its spectrum, suggesting that the WHIM is metal rich and sufficient to close the missing baryons problem. Our survey indicates that the blazar is a member of a z = 0.433 group and that the higher-z O VII candidate arises from its intragroup medium. The resulting bias precludes its use in baryon censuses. The z = 0.3551 candidate occurs in an isolated environment 630 kpc from the nearest galaxy (with stellar mass log M-*/M-circle dot approximate to 9.7), which we show is unexpected for the WHIM. Finally, we characterize the galactic environments of broad H I Ly alpha absorbers (Doppler widths of b = 40-80 km s(-1); T less than or similar to 4 x10(5) K) that provide metallicity-independent WHIM probes. On average, broad Ly alpha absorbers are approximate to 2x closer to the nearest luminous (L > 0.25L(*)) galaxy (700 kpc) than narrow (b < 30 km s(-1); T less than or similar to 4 x 10(5) K) ones (1300 kpc) but approximate to 2x further than O VI absorbers (350 kpc). These observations suggest that gravitational collapse heats portions of the IGM to form the WHIM, but with feedback that does not enrich the IGM far beyond galaxy/group halos to levels currently observable in UV/X-ray metal lines.
View Full Publication open_in_new
Abstract
We present the analysis of deep optical imaging of the galaxy cluster A133 with the IMACS instrument on Magellan. Our multi-band photometry enables stellar-mass measurements in the cluster member galaxies down to a mass limit of M = 3 x 108 M (0.1 of the Large Magellanic Cloud stellar mass). We observe a clear difference in the spatial distribution of large and dwarf galaxies within the cluster. Modeling these galaxy populations separately, we can confidently track the distribution of stellar mass locked in the galaxies to the cluster's virial radius. The extended envelope of the cluster's brightest galaxy can be tracked to 200 kpc. The central galaxy contributes 1/3 of the total cluster stellar mass within the radius r(500c).
View Full Publication open_in_new
Abstract
Despite significant progress both observationally and theoretically, the origin of high-ionization nebular He If emission in galaxies dominated by stellar photoionization remains unclear. Accretion-powered radiation from high-mass X-ray binaries (HMXBs) is still one of the leading proposed explanations for the missing He-ionizing photons, but this scenario has yet to be conclusively tested. In this paper, we present nebular line predictions from a grid of photoionization models with input spectral energy distributions containing the joint contribution of both stellar atmospheres and a multicolour disc model for HMXBs. This grid demonstrates that HMXBs are inefficient producers of the photons necessary to power He II, and can only boost this line substantially in galaxies with HMXB populations large enough to power X-ray luminosities of 10(42) erg s(-1) per unit star formation rate (SFR). To test this, we assemble a sample of 11 low-redshift star-forming galaxies with high-quality constraints on both X-ray emission from Chandra and He II emission from deep optical spectra, including new observations with the MMT. These data reveal that the HMXB populations of these nearby systems are insufficient to account for the observed He It strengths, with typical X-ray luminosities or upper limits thereon of only 10(40)-10(41) erg s(-1) per SFR. This indicates that HMXBs are not the dominant source of He+ ionization in these metal-poor star-forming galaxies. We suggest that the solution may instead reside in revisions to stellar wind predictions, softer X-ray sources, or very hot products of binary evolution at low metallicity.
View Full Publication open_in_new
Abstract
Based on observations of the Seyfert nucleus in NGC 1068 with ASCA, RXTE, and BeppoSAX, we report the discovery of a are (increase in flux by a factor of similar to1.6) in the 6.7 keV Fe K line component between observations obtained 4 months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe Kalpha line components. During this time, the continuum flux decreased by similar to20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII-XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (similar to2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located less than or similar to0.2 pc from the AGN. The remaining similar to1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The coronal gas in the inner narrow-line region and/or the cold gas at the inner surface of the obscuring "torus" are possible cold reflectors. The inferred properties of the warm reflector are size (diameter) less than or similar to0.2 pc, gas density ngreater than or similar to10(5.5) cm(-3), ionization parameter xiapproximate to10(3.5) ergs cm s(-1), and covering fraction 0.003(L-0/10(43.5) ergs s(-1))(-1) <(&UOmega;/4π)<0.024(L-0/10(43.5) ergs s(-1))(-1), where L-0 is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the warm reflector gas is the source of the ( variable) 6.7 keV Fe line emission and the 6.97 keV Fe line emission. The 6.7 keV line are is assumed to be due to an increase in the emissivity of the warm reflector gas from a decrease (by 20%-30%) in L-0. The properties of the warm reflector are most consistent with an intrinsically X-ray weak AGN with L(0)approximate to10(43.0) ergs s(-1). The optical and UV emission that scatters from the warm reflector into our line of sight is required to suffer strong extinction, which can be reconciled if the line of sight skims the outer surface of the torus. Thermal brems-strahlung radio emission from the warm reflector may be detectable in Very Long Baseline Array radio maps of the NGC 1068 nucleus.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 417
  • Page 418
  • Page 419
  • Page 420
  • Current page 421
  • Page 422
  • Page 423
  • Page 424
  • Page 425
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025