Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Previous x-ray diffraction measurements revealed the pressure-induced decomposition of an fcc LaH2.3 into H-rich and H-poor fcc phases around 11 GPa. The present neutron diffraction measurements on LaD2 confirm the formation of NaCl-type LaD as a counterpart of the D-rich LaD2+delta by disproportionation. First-principles enthalpy and lattice dynamic calculations demonstrate that the NaCl-type LaH is stabilized at high pressures and can be recovered at ambient conditions. Finding the NaCl-type LaH will pave the way for investigations on the site-dependent nature of hydrogen-metal interactions.
View Full Publication open_in_new
Abstract
Being the lightest and the most abundant element in the universe, hydrogen is fascinating to physicists. In particular, the conditions of its metallization associated with a possible superconducting state at high temperature have been a matter of much debate in the scientific community, and progress in this field is strongly correlated with the advancements in theoretical methods and experimental techniques. Recently, the existence of hydrogen in a metallic state was reported experimentally at room temperature under a pressure of 260-270 GPa, but was shortly after that disputed in the light of more experiments, finding either a semimetal or a transition to an other phase. With the aim to reconcile the different interpretations proposed, we propose by combining several computational techniques, such as density functional theory and the GW approximation, that phase III at ambient temperature of hydrogen is the Cmca-12 phase, which becomes a semimetal at 260 GPa. From phonon calculations, we demonstrate it to be dynamically stable; calculated electron-phonon coupling is rather weak and therefore this phase is not expected to be a high-temperature superconductor.
View Full Publication open_in_new
Abstract
We have used the ab initio random structure searching method together with density functional theory calculations to find stable structures of strontium under pressures up to 50 GPa. We predict a sequence of structural phase transitions and the stability of an orthorhombic structure of Cmcm symmetry above 25 GPa. Our energy, lattice dynamics, and molecular dynamics calculations confirm the stability of the Cmcm structure. The electron-phonon coupling calculations show that superconductivity arises in the bcc structure of compressed Sr and that it continues to exist in the Cmcm structure. The calculated superconducting transition temperatures are in good agreement with experiment. Our study gives an excellent account of the experimental observations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.47423231
View Full Publication open_in_new
Abstract
Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a approximate to 2.5 x 10(8) M-circle dot black hole. Although the nuclei have an observed hard X-ray flux ratio of f(X)(NE)/f(X)(SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe K alpha line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H-2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T similar to 10(7) K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 mu m emission aligned with soft X-rays, radio continuum, and ionized gas emission extending similar to 34 '' (20 kpc) north of the galaxies is interpreted as similar to 2 x 10(7) M-circle dot of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blowout" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed L-x/L-ir ratios by over two orders of magnitude.
View Full Publication open_in_new
Abstract
Nuclear stellar cusps are defined as central excess light component in the stellar light profiles of galaxies and are suggested to be stellar relics of intense compact starbursts in the central similar to 100-500 pc region of gas-rich major mergers. Here, we probe the build-up of nuclear cusps during the actual starburst phase for a complete sample of luminous infrared galaxy (LIRG) systems (85 LIRGs, with 11.4 < log [L-IR/L-circle dot] < 12.5) in the Great Observatories All-sky LIRG Survey sample. Cusp properties are derived via 2D fitting of the nuclear stellar light imaged in the near-infrared (NIR) by the Hubble Space Telescope and have been combined with mid-infrared (IR) diagnostics for active galactic nucleus (AGN)/starburst characterization. We find that nuclear stellar cusps are resolved in 76 per cent of LIRGs (merger and non-interacting galaxies). The cusp strength and luminosity increase with far-IR luminosity (excluding AGN) and merger stage, confirming theoretical models that starburst activity is associated with the build-up of nuclear stellar cusps. Evidence for ultracompact nuclear starbursts is found in similar to 13 per cent of LIRGs, which have a strong unresolved central NIR light component but no significant contribution of an AGN. The nuclear NIR surface density (measured within 1 kpc radius) increases by a factor of similar to 5 towards late merger stages. A careful comparison to local early-type galaxies with comparable masses reveals (a) that local (U)LIRGs have a significantly larger cusp fraction and (b) that the majority of the cusp LIRGs have host galaxy luminosities (H band) similar to core ellipticals which are roughly one order in magnitude larger than those for cusp ellipticals.
View Full Publication open_in_new
Abstract
We present a high-resolution angle-resolved photoemission spectroscopy study in conjunction with first-principles calculations to investigate how the interaction of electrons with phonons in graphene is modified by the presence of Yb. We find that the charges transferred from Yb to the graphene layer hybridize with the graphene pi bands, leading to a strong enhancement of the electron-phonon interaction. Specifically, the electron-phonon coupling constant is increased by as much as a factor of 10 upon the introduction of Yb with respect to as-grown graphene (<= 0.05). The observed coupling constant constitutes the highest value ever measured for graphene and suggests that the hybridization between graphene and the adatoms might be a critical parameter in realizing superconducting graphene.
View Full Publication open_in_new
Abstract
Flowering in plants is a dynamic and synchronized process where various cues including age, day length, temperature and endogenous hormones fine-tune the timing of flowering for reproductive success. Arabidopsis thaliana is a facultative long day (LD) plant where LD photoperiod promotes flowering. Arabidopsis still flowers under short-day (SD) conditions, albeit much later than in LD conditions. Although factors regulating the inductive LD pathway have been extensively investigated, the non-inductive SD pathway is much less understood. Here, we identified a key basic helix-loop-helix transcription factor called NFL (NO FLOWERING IN SHORT DAY) that is essential to induce flowering specifically under SD conditions in Arabidopsis. nfl mutants do not flower under SD conditions, but flower similar to the wild type under LD conditions. The no-flowering phenotype in SD is rescued either by exogenous application of gibberellin (GA) or by introducing della quadruple mutants in the nfl background, suggesting that NFL acts upstream of GA to promote flowering. NFL is expressed at the meristematic regions and NFL is localized to the nucleus. Quantitative RT-PCR assays using apical tissues showed that GA biosynthetic genes are downregulated and the GA catabolic and receptor genes are upregulated in the nfl mutant compared with the wild type, consistent with the perturbation of the endogenous GA biosynthetic and catabolic intermediates in the mutant. Taken together, these data suggest that NFL is a key transcription factor necessary for promotion of flowering under non-inductive SD conditions through the GA signaling pathway.
View Full Publication open_in_new
Abstract
The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere(1). The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states(1), spin states(2) and phase stabilities(3,4) of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H-2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O-2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.
View Full Publication open_in_new
Abstract
The cycling of hydrogen influences the structure, composition, and stratification of Earth's interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO(2)Hx. Using a combination of theoretical simulations and high-pressure-temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositional range of P phase of 0.39 < x < 0.81, corresponding to 19-61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.
View Full Publication open_in_new
Abstract
Recent studies on new materials crystallized with the sp(3) open framework of Si and other group IV elements are reviewed. The synthesis and predicted properties of a new allotrope of silicon, i.e., orthorhombically structured silicon Si-24, are investigated. Si-24 can be formed by heating a Na4Si24 precursor at temperatures as low as 47 degrees C. The quasi-direct band-gap nature with a gap of similar to 1.3 eV is predicted on the basis of a first-principles calculation. We also review investigations on clathrate materials having Si, Ge or Sn framework atoms for which pressure plays an important role. The phenomena and characteristics of clathrates under high pressures, i.e., the volume collapse phase transition and amorphization, are discussed on the basis of a survey over various clathrates with types I, II, III, and VIII structures. (C) 2017 The Japan Society of Applied Physics
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 325
  • Page 326
  • Page 327
  • Page 328
  • Current page 329
  • Page 330
  • Page 331
  • Page 332
  • Page 333
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025