Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Featured Staff Member

    Jeff Dukes

    Dr. Jeffrey Dukes

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Jeffrey Dukes
    Senior Staff Scientist

    Jeff Dukes’ research examines how plants and ecosystems respond to a changing environment, focusing on topics from invasive species to climate change.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    JWST image
    Colloquium

    Prof. Harley Katz (University of Chicago)

    The Spectral Revolution at Cosmic Dawn: Interpreting High-Redshift JWST Observations with Next-Generation Models

    February 10

    11:00am PST

    Lava exoplanet
    Seminar

    Kaustav Das (Caltech)

    TBD

    February 13

    12:15pm PST

    quasars
    Colloquium

    Dr. Kirsten Hall (Center for Astrophysics, Harvard University)

    The hottest phase of quasar winds revealed: excess intergalactic heating detected via the thermal Sunyaev-Zel'dovich effect

    February 17

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Lori Willhite Headsot
    Breaking News
    February 03, 2026

    Lori Willhite brings EPL's mass spec lab into the future

    Jennifer Kasbohm & Andrea Giuliani
    Breaking News
    February 02, 2026

    Geochronology: Decoding Earth’s Past to Shape Its Future

    Composition of curves and straight lines. Graphic Design. Magic energy multicolored fractal. 3D rendering.
    Breaking News
    February 01, 2026

    Does Time Have a Second Arrow? Two Carnegie Scientists Probe the Evolution of Everything

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Carnegie-Chicago Hubble Program (CCHP) is building a direct path to the Hubble constant (H-0) using Population II stars as the calibrator of the Type Ia supernova (SN;Ia)-based distance scale. This path to calibrate the SNe;Ia is independent of the systematics in the traditional Cepheid-based technique. In this paper, we present the distance to M101, the host to SN 2011fe, using the I-band tip of the red giant branch (TRGB) based on observations from the ACS/WFC instrument on the Hubble Space Telescope. The CCHP targets the halo of M101, where there is little to no host galaxy dust, the red giant branch is isolated from nearly all other stellar populations, and there is virtually no source confusion or crowding at the magnitude of the tip. Applying the standard procedure for the TRGB method from the other works in the CCHP series, we find a foreground-extinction-corrected M101 distance modulus of ?(0);=;29.07;;0.04(stat);;0.05(sys) mag, which corresponds to a distance of D;=;6.52;;0.12(stat);;0.15(sys) Mpc. This result is consistent with several recent Cepheid-based determinations, suggesting agreement between Population I and II distance scales for this nearby SN;Ia host galaxy. We further analyze four archival data sets for M101 that have targeted its outer disk to argue that targeting in the stellar halo provides much more reliable distance measurements from the TRGB method owing to the combination of multiple structural components and heavy population contamination. Application of the TRGB in complex regions will have sources of uncertainty not accounted for in commonly used uncertainty measurement techniques.
View Full Publication open_in_new
Abstract
Experimentally determined major and trace element partition coefficients between majoritic garnet, clinopyroxene, and carbon dioxide-rich liquid are reported at 10 GPa and 1800 degrees C in a model carbonated peridotite composition in the system CaO-MgO-Al2O3-SiO2-CO2. Besides majoritic garnet, the liquid coexists with forsterite, orthopyroxene, and clinopyroxene, making melting phase relations invariant at fixed pressure and temperature conditions. Partition coefficients span a wide range of values - for instance, Sr, Nb, Ba, La, and Ce are highly incompatible in majoritic garnet, while Ca, Y, Nb, and Ho are moderately incompatible, and Lu, Si, Al, and Mg are compatible. Strong fractionation of light rare earth elements (e.g., La, Ce, Nd, Sm) and high field strength elements (e.g., Nb, Ta, Zr, Hf, Th) is seen between majoritic garnet and liquid. The experimentally determined partitioning values are used to calculate compositions of melts in equilibrium with majoritic garnet inclusions in diamonds from select localities in Brazil and Guinea. The calculated melts largely straddle those between documented carbonatites, kimberlites, and alkali basalts, low-degree mantle melting products from carbonated peridotite. This resemblance firmly suggests that majoritic garnet inclusions in diamonds from Brazil and Guinea can simply be interpreted as precipitates from such melts, thereby offering an alternative to the hypothesis that the element chemistry of such inclusions in diamonds can largely, and sometimes only, be ascribed to subducted oceanic crust, and further that, fusion of this crust may limit the terrestrial 'carbon recycling' at depths much beyond corresponding to those of Earth's transition zone. (C) 2020 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.
View Full Publication open_in_new
Abstract
Total RNA from 20 defolliculated, enucleated oocytes of a mature female Xenopus tropicalis frog Data were extracted from the CEL files, RMA normalized across all samples and converted to Log2 notation with Partek Genomics Suite (Partek, Missouri, USA). These values were labeled as to their source and the groups compared.
View Full Publication open_in_new
Abstract
Total RNA from 716 hand-isolated germinal vesicles from oocytes of a mature Xenopus tropicalis frog Data were extracted from the CEL files, RMA normalized across all samples and converted to Log2 notation with Partek Genomics Suite (Partek, Missouri, USA). These values were labeled as to their source and the groups compared.
View Full Publication open_in_new
Abstract
Total RNA from 1,008 hand-isolated, demembranated germinal vesicles from oocytes of a mature Xenopus tropicalis frog Data were extracted from the CEL files, RMA normalized across all samples and converted to Log2 notation with Partek Genomics Suite (Partek, Missouri, USA). These values were labeled as to their source and the groups compared.
View Full Publication open_in_new
Abstract
Fluorescent in situ hybridization (FISH) is a technique for determining the cytological localization of RNA or DNA molecules. There are many approaches available for generating in situ hybridization probes and conducting the subsequent hybridization steps. Here, we describe a simple and reliable FISH method to label small RNAs (200-500 nucleotides in length) that are enriched in nuclear bodies in Drosophila melanogaster ovaries, such as Cajal bodies (CBs) and histone locus bodies (HLBs). This technique can also be applied to other Drosophila tissues, and to abundant mRNAs such as histone transcripts.
View Full Publication open_in_new
Abstract
This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of similar to 70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.
View Full Publication open_in_new
Abstract
In situ hybridization is the technique by which specific RNA or DNA molecules are detected in cytological preparations. Basically it involves formation of a hybrid molecule between an endogenous single stranded RNA or DNA in the cell and a complementary single-stranded RNA or DNA probe. In its original form the probe was labeled with H-3 and the hybrid was detected by autoradiography. The first successful experiments in 1968 involved detection of the highly amplified ribosomal DNA in oocytes of the frog Xenopus, followed soon after by the reiterated "satellite DNA" in mouse and Drosophila chromosomes. Fluorescent probes were developed about ten years later. (C) 2015 Elsevier Inc. All rights reserved.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 320
  • Page 321
  • Page 322
  • Page 323
  • Current page 324
  • Page 325
  • Page 326
  • Page 327
  • Page 328
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026