Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Many stem cells undergo asymmetric division to produce a self-renewing stem cell and a differentiating daughter cell. Here we show that, similarly to H3, histone H4 is inherited asymmetrically in Drosophila melanogaster male germline stem cells undergoing asymmetric division. In contrast, both H2A and H2B are inherited symmetrically. By combining super-resolution microscopy and chromatin fiber analyses with proximity ligation assays on intact nuclei, we find that old H3 is preferentially incorporated by the leading strand, whereas newly synthesized H3 is enriched on the lagging strand. Using a sequential nucleoside analog incorporation assay, we detect a high incidence of unidirectional replication fork movement in testes-derived chromatin and DNA fibers. Biased fork movement coupled with a strand preference in histone incorporation would explain how asymmetric old and new H3 and H4 are established during replication. These results suggest a role for DNA replication in patterning epigenetic information in asymmetrically dividing cells in multicellular organisms.
View Full Publication open_in_new
Abstract
Although the nucleolus was first described in the early 19th century from both animal and plant cells, human nucleoli and particularly the five human nucleolus organizers have not been well characterized. In this issue of Genes & Development, van Sluis and colleagues (pp. 1688-1701) present a detailed molecular analysis of these organizers, which occur on the short arms of five human chromosomes. The near identity of these arms suggests extensive interchromosomal exchange during evolutionary history.
View Full Publication open_in_new
Abstract
During DNA replication, the genetic information of a cell is copied. Subsequently, identical genetic information is segregated reliably to the two daughter cells through cell division. Meanwhile, DNA replication is intrinsically linked to the process of chromatin duplication, which is required for regulating gene expression and establishing cell identities. Understanding how chromatin is established, maintained or changed during DNA replication represents a fundamental question in biology. Recently, we developed a method to directly visualize chromatin components at individual replication forks undergoing DNA replication. This method builds upon the existing chromatin fiber technique and combines it with cell type-specific chromatin labeling and superresolution microscopy. In this method, a short pulse of nucleoside analog labels replicative regions in the cells of interest. Chromatin fibers are subsequently isolated and attached to a glass slide, after which a laminar flow of lysis buffer extends the lysed chromatin fibers parallel with the direction of the flow. Fibers are then immunostained for different chromatin-associated proteins and mounted for visualization using superresolution microscopy. Replication foci, or 'bubbles,' are identified by the presence of the incorporated nucleoside analog. For researchers experienced in molecular biology and superresolution microscopy, this protocol typically takes 2-3 d from sample preparation to data acquisition, with an additional day for data processing and quantification.
View Full Publication open_in_new
Abstract
The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.
View Full Publication open_in_new
Abstract
Here we describe novel spherical structures that are induced by cold shock on the lampbrush chromosomes (LBCs) of Xenopus laevis oocytes. We call these structures cold bodies or C-bodies. C-bodies are distributed symmetrically on homologous LBCs, with a pattern similar to that of 5S rDNA. Neither active transcription nor translation is necessary for their formation. Similar protrusions occur on the edges of some nucleoli. Endogenous LBCs as well as those derived from injected sperm form C-bodies under cold shock conditions. The function of C-bodies is unknown.
View Full Publication open_in_new
Abstract
The lampbrush chromosomes (LBCs) in oocytes of the Mexican axolotl (Ambystoma mexicanum) were identified some time ago by their relative lengths and predicted centromeres, but they have never been associated completely with the mitotic karyotype, linkage maps or genome assembly. We identified 9 of the axolotl LBCs using RNAseq to identify actively transcribed genes and 13 BAC (bacterial artificial clone) probes containing pieces of active genes. Using read coverage analysis to find candidate centromere sequences, we developed a centromere probe that localizes to all 14 centromeres. Measurements of relative LBC arm lengths and polymerase III localization patterns enabled us to identify all LBCs. This study presents a relatively simple and reliable way to identify each axolotl LBC cytologically and to anchor chromosome-length sequences (from the axolotl genome assembly) to the physical LBCs by immunostaining and fluorescence in situ hybridization. Our data will facilitate a more detailed transcription analysis of individual LBC loops.
View Full Publication open_in_new
Abstract
In the seconds following their formation in core-collapse supernovae, "proto"-magnetars drive neutrino-heated magneto-centrifugal winds. Using a suite of two-dimensional axisymmetric MHD simulations, we show that relatively slowly rotating magnetars with initial spin periods of P-*0 = 50-500 ms spin down rapidly during the neutrino Kelvin-Helmholtz cooling epoch. These initial spin periods are representative of those inferred for normal Galactic pulsars, and much slower than those invoked for gamma-ray bursts and super-luminous supernovae. Since the flow is non-relativistic at early times, and because the Alfven radius is much larger than the proto-magnetar radius, spindown is millions of times more efficient than the typically-used dipole formula. Quasi-periodic plasmoid ejections from the closed zone enhance spindown. For polar magnetic field strengths B-0 greater than or similar to 5 x 10(14) G, the spindown timescale can be shorter than than the Kelvin-Helmholtz timescale. For B-0 greater than or similar to 10(15) G, it is of order seconds in early phases. We compute the spin evolution for cooling proto-magnetars as a function of B-0, P-*0, and mass (M). Proto-magnetars born with B-0 greater than similar or equal to 1.3 x 10(15)G(P-*0/400ms)(-1.4)(M/1.4M(circle dot))(2.2) spin down to periods >1 s in just the first few seconds of evolution, well before the end of the cooling epoch and the onset of classic dipole spindown. Spindown is more efficient for lower M and for larger P-*0. We discuss the implications for observed magnetars, including the discrepancy between their characteristic ages and supernova remnant ages. Finally, we speculate on the origin of 1E 161348-5055 in the remnant RCW 103, and the potential for other ultra-slowly rotating magnetars.
View Full Publication open_in_new
Abstract
Several external hardware upgrades have been developed for the APOGEE Spectrographs as part of the Sloan Digital Sky Survey-V (SDSS-V) to improve their radial velocity (RV) precision from a floor of 100-200 m/sec to approx. 30 m/sec. The upgrades include: (1) Back Pressure Regulator (BPR) systems to stabilize the internal instrument LN2 tank boil-off pressure, lessening induced movement of the APOGEE optical bench; (2) Fabry-Perot Interferometer (FPI) calibration sources to improve wavelength calibration; and (3), the use of octagonal core fiber segments in the fiber train to improve radial scrambling. We discuss the fabrication, commissioning, and early performance of these upgrades.
View Full Publication open_in_new
Abstract
The correlation between black hole masses and stellar velocity dispersions provides an efficient method to determine the masses of black holes in active galaxies. We obtained optical spectra of a Compact-Steep-Spectrum (CSS) galaxy 4C+29.70, using the Canada-France-Hawaii Telescope (CFHT) equipped with OSIS, in 2003 August 6. Several stellar absorption features, such as Mg I (5175 angstrom), Ca E band (5269 angstrom) and Na D (5890 angstrom), were detected in the spectra. The stellar velocity dispersion, sigma, of the host galaxy, measured from absorption features is approximate to 250 km s(-1). If 4C +29.70 follows the M-BH-sigma relation established for nearby galaxies, then its central black hole has a mass of approximate to 3.3 x 10(8) M-circle dot. In combination with the black hole masses of seven GPS galaxies in Snellen et al. (2003), we find that the average black hole mass of these eight young radio sources is smaller than that of the Bettoni et al. (2003) sample of extended radio galaxies. This may indicate that young radio sources are likely at the early evolutionary stage of radio galaxies, at which the central black holes may still undergo rapid growth. However, this needs further investigations. (C) 2009 WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 318
  • Page 319
  • Page 320
  • Page 321
  • Current page 322
  • Page 323
  • Page 324
  • Page 325
  • Page 326
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025