Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Because of its far-reaching applications in geophysics and materials science, quartz has been one of the most extensively examined materials under dynamic compression. Despite 50 years of active research, questions remain concerning the structure and transformation of SiO2 under shock compression. Continuum gas-gun studies have established that under shock loading quartz transforms through an assumed mixed-phase region to a dense high-pressure phase. While it has often been assumed that this high-pressure phase corresponds to the stishovite structure observed in static experiments, there have been no crystal structure data confirming this. In this study, we use gas-gun shock compression coupled with in situ synchrotron x-ray diffraction to interrogate the crystal structure of shock-compressed alpha-quartz up to 65 GPa. Our results reveal that alpha-quartz undergoes a phase transformation to a disordered metastable phase as opposed to crystalline stishovite or an amorphous structure, challenging long-standing assumptions about the dynamic response of this fundamental material.
View Full Publication open_in_new
Abstract
In situ x-ray diffraction and wave-profile measurements were carried out on polycrystalline boron carbide under laser-induced shock compression at 51 GPa at the Matter in Extreme Conditions end-station of the Linac Coherent Light Source. The diffraction data indicate that boron carbide remains crystalline to this pressure and there is no evidence for a major structural phase transition. The peak elastic stress for boron carbide was found to be 15.9 GPa, in agreement with previous gas-gun measurements, despite differences in sample thickness and loading rate between laser and gas-gun compression. The starting sample contained excess carbon in the form of graphite. The graphite peaks disappeared upon compression of the sample, indicating that carbon was incorporated into the structure of boron carbide behind the shock front and retained upon decompression.
View Full Publication open_in_new
Abstract
We provide here an overview of the remarkable life and outstanding research of David (Dave) Charles Fork (March 4, 1929-December 13, 2021) in oxygenic photosynthesis. In the words of the late Jack Edgar Myers, he was a top 'photosynthetiker'. His research dealt with novel findings on light absorption, excitation energy distribution, and redistribution among the two photosystems, electron transfer, and their relation to dynamic membrane change as affected by environmental changes, especially temperature. David was an attentive listener and a creative designer of experiments and instruments, and he was also great fun to work with. He is remembered here by his family, coworkers, and friends from around the world including Australia, France, Germany, Japan, Sweden, Israel, and USA.
View Full Publication open_in_new
Abstract
Colombia, one of the world's most species-rich nations, is currently undergoing a profound social transition: the end of a decades-long conflict with the Revolutionary Armed Forces of Colombia, known as FARC. The peace agreement process will likely transform the country's physical and socioeconomic landscapes at a time when humans are altering Earth's atmosphere and climate in unprecedented ways. We discuss ways in which these transformative events will act in combination to shape the ecological and environmental future of Colombia. We also highlight the risks of creating perverse development incentives in these critical times, along with the potential benefits - for the country and the world - if Colombia can navigate through the peace process in a way that protects its own environment and ecosystems.
View Full Publication open_in_new
Abstract
Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the Neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a data set to benchmark such models.
View Full Publication open_in_new
Abstract
Climate change has increased global mean surface temperatures and altered hydrological processes, and projections suggest that these changes will accelerate. As seasonal precipitation patterns change, so will the soil resources available for plants. In the midwestern United States, winter temperatures and precipitation are expected to increase, while snowfall is expected to be reduced. Reduced snowpack could lead to greater frost damage and alter the timing and amount of plant available resources at the start of the growing season. In the summer, precipitation is expected to decrease, and variability is expected to increase, creating longer and more frequent dry periods. In temperate forests, herbaceous understory plants and woody plants in early developmental stages are expected to be highly sensitive to changes in abiotic conditions. Here, we study how seasonal changes in precipitation affect the timing and availability of resources in a temperate deciduous forest. Further, we examine how changes in abiotic conditions influence understory composition and woody plant recruitment. We established a fully factorial experiment that manipulated winter snowfall and summer precipitation to create wet, dry, and control (ambient) conditions in a temperate deciduous forest near West Lafayette, Indiana, USA. We found that large changes in winter and summer precipitation appeared to affect forest processes independently of one another, and changes in seasonal precipitation altered understory composition minimally and had little to no effect on mineralization rates. The recruitment of woody plant species may be more sensitive to altered precipitation, as snow removal lowered germination rates and wet summer conditions lowered relative growth of a woody plant species, Lindera benzoin. In general, though, ecological processes in this forest understory were relatively resistant to change, at least in the short timeframe of this experiment.
View Full Publication open_in_new
Abstract
Global warming, in combination with altered precipitation patterns, is accelerating global soil respiration, which could in turn accelerate climate change. The biological mechanisms through which soil carbon (C) responds to climate are not well understood, limiting our ability to predict future global soil respiration rates. As part of a climate manipulation experiment, we tested whether differences in soil heterotrophic respiration (R-H) driven by season or climate treatment are linked to (1) relative abundances of microbes in active and dormant metabolic states, (2) net changes in microbial biomass and/or (3) changes in the relative abundances of microbial groups with different C-use strategies. We used a flow-cytometric single-cell metabolic assay to quantify the abundance of active and dormant microbes, and the phospholipid fatty acid method to determine microbial biomass and ratios of fungi:bacteria and Gram-positive:Gram-negative bacteria. R-H did not respond to climate treatments but was greater in the warm and dry summer than in the cool and less-dry fall. These dynamics were better explained when microbial data were taken into account compared to when only physical data (temperature and moisture) were used. Overall, our results suggest that R-H responses to temperature are stronger when soil contains more active microbes, and that seasonal patterns of R-H can be better explained by shifts in microbial activity than by shifts in the relative abundances of fungi and Gram-positive and Gram-negative bacteria. These findings contribute to our understanding of how and under which conditions microbes influence soil C responses to climate.
View Full Publication open_in_new
Abstract
Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in under-represented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
View Full Publication open_in_new
Abstract
The role of plant diversity in reducing invasions has generated decades of debate. Diverse communities might be more resistant to invasion because the communities contain resident species that are functionally similar to the invader (limiting similarity), or multiple species use the range of available resources more effectively (complementarity) than single species. However, the correlation of native and exotic diversity often reverses, becoming positive, with increasing spatial and temporal scale, in a phenomenon called the invasion paradox. We addressed two groups of hypotheses related to this paradox, broadly that (1) functional diversity and identity resist invasion initially, via complementarity or limiting similarity; and (2) disturbance and propagule pressure weaken the effects of functional diversity and identity on invader success through time. Using long-term data from experimental serpentine grassland assemblages in California, we examined how the abundance of a high impact invader, yellow starthistle (Centaurea solstitialis), related to functional diversity, functional dissimilarity, pocket gopher disturbance, and propagule pressure. We also conducted a single-season experiment in which we seeded disturbed and undisturbed areas and quantified invader success the following year. Neither diversity, nor dissimilarity, nor disturbance significantly impacted the success of C. solstitialis during the years of this study. Instead, propagule pressure was the single most important predictor of C. solstitialis abundance. We consolidated these findings into a novel conceptual model of invader success to illustrate how propagule input may outweigh community resistance through time, and what implications these dynamics have for the invasion paradox.
View Full Publication open_in_new
Abstract
Triose phosphate utilization (TPU)-limited photosynthesis occurs when carbon export from the Calvin-Benson cycle cannot keep pace with carbon inputs and processing. This condition is poorly constrained by observations but may become an increasingly important driver of global carbon cycling under future climate scenarios. However, the consequences of including or omitting TPU limitation in models have seldom been quantified. Here, we assess the impact of changing the representation of TPU limitation on leaf-and global-scale processes. At the leaf scale, TPU limits photosynthesis at cold temperatures, high CO2 concentrations, and high light levels. Consistent with leaf-scale results, global simulations using the Community Land Model version 4.5 illustrate that the standard representation of TPU limits carbon gain under present day and future conditions, most consistently at high latitudes. If the assumed TPU limitation is doubled, further restricting photosynthesis, terrestrial ecosystem carbon pools are reduced by 9 Pg by 2100 under a business-as-usual scenario. The impact of TPU limitation on global terrestrial carbon gain suggests that CO2 concentrations may increase more than expected if models omit TPU limitation, and highlights the need to better understand when TPU limitation is important, including variation among different plant types and acclimation to temperature and CO2.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 314
  • Page 315
  • Page 316
  • Page 317
  • Current page 318
  • Page 319
  • Page 320
  • Page 321
  • Page 322
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025