Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present the first results of a comprehensive investigation aimed at testing the hypothesis of chondrule-matrix complementarity and the four-component model for the compositions of the carbonaceous chondrites and their components. Combining point-counting with electron microprobe analyses, we have determined the bulk compositions of thin sections, as well as the average abundances and compositions of the major chondritic components (chondrules, matrix, refractory inclusions, isolated silicate grains and isolated opaque grains). To minimize the potential for element exchange between components during parent body processing, the two most primitive COs, DOM 08006 and ALH 77307, and the primitive ungrouped CO/CM-like Acfer 094 were selected for this study. To verify our method, we also examined one section of the well-studied CO3.2 Kainsaz, a fall that is free of weathering. We were able to reproduce all major and many minor elemental concentrations reported in the literature for average bulk COs and Kainsaz to better than 10%. The elements most commonly cited as displaying evidence for complementarity are Mg, Si, Al, Ca, Fe and Ti. Iron, however, can be easily affected by chondrule metal-silicate fractionation, redistribution in the parent body and weathering, and our Ti data for matrix are likely compromised by an analytical artifact. Hence, we focused on Mg, Al, Si and Ca - four elements that we can determine very accurately - and show that their relative abundances in chondrules are on average CI-like within the uncertainties of the method. The matrix is not CI-like, but its composition can be explained by the loss of 10-15 wt.% of forsterite from an initially CI-like material prior to or during parent body accretion. These results are inconsistent with chondrule-matrix complementarity. Our average CO chondrule compositions, as well as chondrule and matrix abundances, are in line with the predictions of the four-component model. However, the four-component model assumes a CI-like composition for matrix, and also predicts refractory inclusion abundances that are higher and compositions that are less refractory than we observe. While similar studies of the other carbonaceous chondrite groups are needed, these differences may indicate the limitations of the simplifying assumptions made in the four-component model. (C) 2021 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from Mn-53-Cr-53 decay and variable nucleosynthetic contributions from the stable Cr-54 nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (epsilon Cr-53 and epsilon Cr-54) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing epsilon Cr-54 (per ten thousand deviation of the Cr-54/Cr-52 ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH >= CB >= CR >= CM approximate to CV >= CO >= CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group epsilon Cr-54 heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable epsilon Cr-54 (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common epsilon Cr-54 characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar epsilon Cr-53 values to the CI chondrites, invalidating them as anchors for a bulk Mn-53-Cr-53 isochron for carbonaceous chondrites. Bulk Earth has a epsilon Cr-53 value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites. (C) 2021 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Like most primitive carbonaceous chondrites, the CM chondrites experienced varying degrees of asteroidal aqueous alteration, which may have overprinted pre-accretionary processing. Several aqueous alteration scales for CM chondrites (and other carbonaceous chondrites) have been proposed based on alteration-dependent changes in various petrological and geochemical characteristics. Given the possibility that the intensity of aqueous alteration could be recorded in the primordial noble gas compositions, we test potential correlations between petrologic, geochemical and noble gas characteristics in a detailed study on 39 CM chondrites, including some of the most pristine CM chondrites identified to date, and 4 CM related carbonaceous chondrites. We mainly compare our noble gas data with the alteration schemes proposed by Alexander et al. (2013) and Howard et al. (2015). In addition to the noble gas analyses, we determined the phyllosilicate fractions of 17 of the CM chondrites using X-ray diffraction (XRD) to complement missing data points in the Howard alteration scheme. The influence of post-hydration thermal modification on noble gases in CM chondrites is investigated by comparison of heated and unheated samples. Cosmic-ray exposure (CRE) ages are determined for all samples in this study as well as for 26 more samples based on CM chondrite literature noble gas data.
View Full Publication open_in_new
Abstract
We investigated the stable isotope fractionation of chromium (Cr) for a panorama of chondrites, including EH and EL enstatite chondrites and their chondrules and different phases (by acid leaching). We observed that chondrites have heterogeneous delta Cr-53 values (per mil deviation of the Cr-53/Cr-52 from the NIST SRM 979 standard), which we suggest reflect different physical conditions in the different chondrite accretion regions. Chondrules from a primitive EH3 chondrite (SAH 97096) possess isotopically heavier Cr relative to their host bulk chondrite, which may be caused by Cr evaporation in a reduced chondrule-forming region of the protoplanetary disk. Enstatite chondrites show a range of bulk delta Cr-53 values that likely result from variable mixing of isotopically different sulfide-silicate-metal phases. The bulk silicate Earth (delta Cr-53 = -0.12 +/- 0.02 parts per thousand, 2SE) has a lighter Cr stable isotope composition compared to the average delta Cr-53 value of enstatite chondrites (-0.05 +/- 0.02 parts per thousand, 2SE, when two samples out of 19 are excluded). If the bulk Earth originally had a Cr isotopic composition that was similar to the average enstatite chondrites, this Cr isotope difference may be caused by evaporation under equilibrium conditions from magma oceans on Earth or its planetesimal building blocks, as previously suggested to explain the magnesium and silicon isotope differences between Earth and enstatite chondrites. Alternatively, chemical differences between Earth and enstatite chondrite can result from thermal processes in the solar nebula and the enstatite chondrite-Earth, which would also have changed the Cr isotopic composition of Earth and enstatite chondrite parent body precursors.
View Full Publication open_in_new
Abstract
Knowing how the major chondritic components evolved and what their initial compositions were is pivotal for our understanding of the processes that shaped the early Solar System. Here, we have extended to the CR chondrites our testing of chondrule-matrix complementarity and the four-component model, i.e., two very different explanations for the bulk compositions of the carbonaceous chondrites and their components. Combining point-counting with electron microprobe analyses, we have analyzed four relatively primitive Antarctic CRs and the fall Renazzo. Our results for the abundances of chondrules and matrix are in good agreement with literature data, and confirm that these abundances vary considerably amongst the CRs (80.4 +/- 2.3 wt.% and 18.5 +/- 2.8 wt.%, respectively, in the four Antarctic CRs vs. 62.3 +/- 3.4 wt.% and 33.2 +/- 2.2 wt.% in Renazzo). The significant differences make the determination of the average properties and bulk compositions of the CRs problematic. This is particularly true for the volatile elements that were predominantly accreted in matrix. Nevertheless, all major and many minor element concentrations reported in the literature for average bulk CRs are reproduced here to better than 10%. By comparing our results to conventionally determined bulk compositions, we were able to verify the accuracy of our approach and identify elements likely affected by alteration or analytical artifacts (e.g., Ti, K, Co). Two particular compositional details of the CR chondrites investigated are (a) the relatively high contents of Mn in the chondrules compared to CO chondrules, and (b) the depletion of S in the matrix, relative to CI. In terms of the major elements Mg, Al, Si and Ca, our data suggest that unaltered chondrules and matrix exhibited CI-like relative abundances, supporting previous conclusions for the CO chondrites. Where observed, deviations of element abundances in the matrix from CI (Na, Mg, S, Ca, Fe, Ni) can be explained in terms of alteration (parent body and terrestrial) and pre-accretionary loss of forsterite and, possibly, sulfides. Overall, our results are more consistent with the predictions of the four-component model than they are with chondrulematrix complementarity. (C) 2022 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
The D/H ratio is a clue to the origin and evolution of hydrogen-bearing chemical species in Solar system materials. D/H has been observed in the coma of many comets, but most such measurements have been for gaseous water. We present the first in situ measurements of the D/H ratios in the organic refractory component of cometary dust particles collected at very low impact speeds in the coma of comet 67P/Churyumov-Gerasimenko (hereafter 67P) by the COSIMA instrument onboard Rosetta. The values measured by COSIMA are spatial averages over an approximately 35 x 50 mu m(2) area. The average D/H ratio for the 25 measured particles is (1.57 +/- 0.54) x 10(-3), about an order of magnitude higher than the Vienna Standard Mean Ocean Water (VSMOW), but more than an order of magnitude lower than the values measured in gas-phase organics in solar-like protostellar regions and hot cores. This relatively high averaged value suggests that refractory carbonaceous matter in comet 67P is less processed than the most primitive insoluble organic matter (IOM) in meteorites, which has a D/H ratio in the range of about 1 to 7 x 10(-4). The cometary particles measured in situ also have a higher H/C ratio than the IOM. We deduce that the measured D/H in cometary refractory organics is an inheritance from the presolar molecular cloud from which the Solar system formed. The high D/H ratios observed in the cometary particles challenges models in which high D/H ratios result solely from processes that operated in the protosolar disc.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 312
  • Page 313
  • Page 314
  • Page 315
  • Current page 316
  • Page 317
  • Page 318
  • Page 319
  • Page 320
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026