Experimentally determined major and trace element partition coefficients between majoritic garnet, clinopyroxene, and carbon dioxide-rich liquid are reported at 10 GPa and 1800 degrees C in a model carbonated peridotite composition in the system CaO-MgO-Al2O3-SiO2-CO2. Besides majoritic garnet, the liquid coexists with forsterite, orthopyroxene, and clinopyroxene, making melting phase relations invariant at fixed pressure and temperature conditions. Partition coefficients span a wide range of values - for instance, Sr, Nb, Ba, La, and Ce are highly incompatible in majoritic garnet, while Ca, Y, Nb, and Ho are moderately incompatible, and Lu, Si, Al, and Mg are compatible. Strong fractionation of light rare earth elements (e.g., La, Ce, Nd, Sm) and high field strength elements (e.g., Nb, Ta, Zr, Hf, Th) is seen between majoritic garnet and liquid. The experimentally determined partitioning values are used to calculate compositions of melts in equilibrium with majoritic garnet inclusions in diamonds from select localities in Brazil and Guinea. The calculated melts largely straddle those between documented carbonatites, kimberlites, and alkali basalts, low-degree mantle melting products from carbonated peridotite. This resemblance firmly suggests that majoritic garnet inclusions in diamonds from Brazil and Guinea can simply be interpreted as precipitates from such melts, thereby offering an alternative to the hypothesis that the element chemistry of such inclusions in diamonds can largely, and sometimes only, be ascribed to subducted oceanic crust, and further that, fusion of this crust may limit the terrestrial 'carbon recycling' at depths much beyond corresponding to those of Earth's transition zone. (C) 2020 Elsevier B.V. All rights reserved.