Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Diana Roman and Andrea Goltz prepare a "trash-cano" at the Earth & Planets Laboratory Open House.
    Breaking News
    November 03, 2025

    Hundreds of Science Enthusiasts Attend Inaugural EPL Open House

    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Postdoc Double Feature - Shubham and Sierra
    Breaking News
    October 28, 2025

    Postdocs explore the origins of worlds in Neighborhood Lecture double feature

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The short-lived Sm-146-Nd-142 isotope system traces key early planetary differentiation processes that occurred during the first 500 million-years of the solar system history. The variations of Nd-142/Nd-144 in terrestrial samples, typically within a range of +/- 20 ppm, are determined using high-precision mass spectrometry that requires quantitative separation of Nd from all other elements in the sample, including the neighboring lanthanides. Recent improvements in mass spectrometry have pushed the analytical precision of Nd-142/Nd-144 measurements down to similar to 2 ppm. Non-mass-dependent isotope fractionation produced during Nd separation, however, is a major factor limiting the quality of the Nd-142 data. Popular chemical separation methods using Ln resins have unpredictable nuclear field shift effects that generate anomalous Nd isotope ratios. In order to solve this problem and potentially resolve small Nd-142/Nd-144 variations within +/- 5 ppm, in this study, we present a new two-step column separation method that effectively removes the isobaric interferents of Ce, Pr and Sm, with a recovery rate of Nd greater than 98%. JNdi-1 standard solutions doped with these interfering elements and geological reference materials are tested to document the performance of this method. A set of titanite samples from the Pilbara Craton in western Australia were also investigated to test the potential isotope fractionation effects. The same samples were processed using our method and the widely used Ln method. In contrast to the nuclear field shift effects observed from the samples using the Ln method, the results based on our new method show no detectable isotope fractionation, which further confirms the reliability of this new column chemistry scheme that is optimized for ppm-level precision Nd isotope ratio measurement, especially for resolving small variations in Nd-142/Nd-144 caused by the decay of Sm-146.
View Full Publication open_in_new
Abstract
A commonly held view in the turbomachinery community is that finite element methods are not well-suited for very large-scale thermomechanical simulations. We seek to dispel this notion by presenting performance data for a collection of realistic, large-scale thermomechanical simulations. We describe the necessary technology to compute problems with O(10(7)) to O(10(9)) degrees-of-freedom, and emphasise what is required to achieve near linear computational complexity with good parallel scaling. Performance data is presented for turbomachinery components with up to 3.3 billion degrees-of-freedom. The software libraries used to perform the simulations are freely available under open source licenses. The performance demonstrated in this work opens up the possibility of system-level thermomechanical modelling, and lays the foundation for further research into high-performance formulations for even larger problems and for other physical processes, such as contact, that are important in turbomachinery analysis.
View Full Publication open_in_new
Abstract
This paper introduces LEoPART, an add-on for the open-source finite element software library FENICS to seamlessly integrate Lagrangian particle functionality with (Eulerian) mesh-based finite element (FE) approaches. LEoPART- which is so much as to say: 'Lagrangian-Eulerian on Particles' - contains tools for efficient, accurate and scalable advection of Lagrangian particles on simplicial meshes. In addition, LEoPART comes with several projection operators for exchanging information between the scattered particles and the mesh and vice versa. These projection operators are based on a variational framework, which allows extension to high-order accuracy. In particular, by implementing a dedicated PDE-constrained particle-mesh projection operator, LEoPART provides all the tools for diffusion-free advection, while simultaneously achieving optimal convergence and ensuring conservation of the projected particle quantities on the underlying mesh. A range of numerical examples that are prototypical to passive and active tracer methods highlight the properties and the parallel performance of the different tools in LEoPART. Lastly, future developments are identified. The source code for LEoPART is actively maintained and available under an open-source license at https//bitbucket.org/jakob_maljaars/leopart. (C) 2020 The Authors. Published by Elsevier Ltd.
View Full Publication open_in_new
Big Tujunga Dam in California’s Angeles National Forest.
November 14, 2022

Sustainable irrigation requires water storage, but big dams should be a last resort

Abstract
Sheet 1: Cytoplasm area (mum2) values after 24 or 48 h post colonization. Fig 3A. Sheet 2: Differential-expression analysis. Fig 3B. Sheet 3: Relative fluorescence intensity of laccase-3 transcript. Fig 3C. Sheet 4: Relative expression values of light-organ laccase-3 after 24 h post colonization. Fig 3D. RNA-seq, RNA sequencing. (XLSX) Copyright: CC BY 4.0
View Full Publication open_in_new
Abstract
The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant ([DELTA]ssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the [DELTA]ssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the [DELTA]ssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 298
  • Page 299
  • Page 300
  • Page 301
  • Current page 302
  • Page 303
  • Page 304
  • Page 305
  • Page 306
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025