Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
To date, most simulations of the final accretion of the terrestrial planets have assumed that all collisions lead to mergers. Recent hydrodynamic simulations of impacts between planetary mass bodies (Leinhardt, Z.M., Stewart, S.T. [2012]. Astrophys. J. 745,79; Genda, H., Kokubo, E., Ida, S. [2012]. Astrophys J. 744, 137) have parameterized the outcome of planetary collisions in terms of the masses and velocities of the colliding bodies. Using these results, it is now possible to simulate late-stage planetary growth using a more realistic model for collisions. Here, we describe results of eight N-body simulations of terrestrial planet formation that incorporate collisional fragmentation and hit-and-run collisions. The results are compared to simulations using identical initial collisions in which all collisions were assumed to result in mergers (Chambers, J.E. [2001]. Icarus 152, 205-224). The new simulations form 3 to 5 terrestrial planets moving on widely spaced orbits with growth complete by 400 My. The mean time for Earth-like planets to reach half their final mass is 17 My, comparable to the time in simulations without fragmentation. However, the prolonged sweep up of collision fragments lengthens the mean time required for Earth analogues to become fully formed to 159 My. The final planets have somewhat smaller masses m and eccentricities e when fragmentation is included. Masses are particularly reduced in the region now occupied by Mars. The final distributions of m, e and semi-major axis are similar to the terrestrial planets of the Solar System, but the strong concentration of mass in the narrow zone occupied by Earth and Venus is not reproduced. Collisional fragmentation is likely to preferentially eject silicate-rich mantle material leaving a target enriched in iron-rich core material. However, large bodies often reaccrete silicate-rich mantle fragments at a later time, leaving their final composition largely unchanged. The final core mass fractions of all but one planet formed in the simulations lie in the range 0.25-0.37 assuming an initial mass fraction of 0.3. (C) 2013 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
In the core accretion model for giant planet formation, a solid core forms by coagulation of dust grains in a protoplanetary disk and then accretes gas from the disk when the core reaches a critical mass. Both stages must be completed in a few million years before the disk gas disperses. The slowest stage of this process may be oligarchic growth in which a giant-planet core grows by sweeping up smaller, asteroidsize planetesimals. Here, we describe new numerical simulations of oligarchic growth using a particle-in-a-box model. The simulations include several processes that can effect oligarchic growth: (i) planetesimal fragmentation due to mutual collisions, (ii) the modified capture rate of planetesimals due to a core's atmosphere, (iii) drag with the disk gas during encounters with the core (so-called "pebble accretion"), (iv) modification of particle velocities by turbulence and drift caused by gas drag, (v) the presence of a population of mm-to-m size "pebbles" that represent the transition point between disruptive collisions between larger particles, and mergers between dust grains, and (vi) radial drift of small objects due to gas drag. Collisions between planetesimals rapidly generate a population of pebbles. The rate at which a core sweeps up pebbles is controlled by pebble accretion dynamics. Metre-size pebbles lose energy during an encounter with a core due to drag, and settle towards the core, greatly increasing the capture probability during a single encounter. Millimetre-size pebbles are tightly coupled to the gas and most are swept past the core during an encounter rather than being captured. Accretion efficiency per encounter increases with pebble size in this size range. However, radial drift rates also increase with size, so metre-size objects encounter a core on many fewer occasions than mm-size pebbles before they drift out of a region. The net result is that core growth rates vary weakly with pebble size, with the optimal diameter being about 10 cm. The main effect of planetesimal size is to determine the rate of mutual collisions, fragment production and the formation of pebbles. 1-km-diameter planetesimals collide frequently and have low impact strengths, leading to a large surface density of pebbles and rapid core growth via pebble accretion. 100-km-diameter planetesimals produce fewer pebbles, and pebble accretion plays a minor role in this case. The strength of turbulence in the gas determines the scale height of pebbles in the disk, which affects the rate at which they are accreted. For an initial solid surface density of 12 g/cm(2) at 5 AU, with 10-cm diameter pebbles and a disk viscosity parameter alpha = 10(-4), a 10-Earth mass core can form in 3 My for 1-10 km diameter planetesimals. The growth of such a core requires longer than 3 My if planetesimals are 100 km in diameter. (C) 2014 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
Late-stage accretion involves collisions which may result in complete or incomplete merging of the two objects, hit-and-run encounters, or mass loss from the target. We use a recent N-body study incorporating these different collision styles (Chambers, J.E. [2013]. Icarus 224, 43-56) to investigate how collision style affects the bulk chemical and isotopic outcomes of terrestrial planet formation. Compared with simulations in which all collisions result in perfect mergers, the variability in modeled silicate mass fraction and tungsten isotope anomaly is larger, especially for lower-mass planets. The final tungsten anomaly also shows a systematic reduction, because the timescale to finish planet growth is longer when incomplete mergers are included. Simulations including incomplete merging can reproduce the observed scatter in both tungsten anomaly and silicate mass fraction of the terrestrial planets. (C) 2014 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.
View Full Publication open_in_new
Abstract
Many features of the outer Solar system are replicated in numerical simulations if the giant planets undergo an orbital instability that ejects one or more ice giants. During this instability, Jupiter and Saturn's orbits diverge, crossing their 2:1 mean motion resonance (MMR), and this resonance-crossing can excite the terrestrial planet orbits. Using a large ensemble of simulations of this giant-planet instability, we directly model the evolution of the terrestrial planet orbits during this process, paying special attention to systems that reproduce the basic features of the outer planets. In systems that retain four giant planets and finish with Jupiter and Saturn beyond their 2:1 MMR, we find at least an 85 per cent probability that at least one terrestrial planet is lost. Moreover, systems that manage to retain all four terrestrial planets often finish with terrestrial planet eccentricities and inclinations larger than the observed ones. There is less than a similar to 5 per cent chance that the terrestrial planet orbits will have a level of excitation comparable to the observed orbits. If we factor in the probability that the outer planetary orbits are well replicated, we find a probability of 1 per cent or less that the orbital architectures of the inner and outer planets are simultaneously reproduced in the same system. These small probabilities raise the prospect that the giant-planet instability occurred before the terrestrial planets had formed. This scenario implies that the giant-planet instability is not the source of the Late Heavy Bombardment and that terrestrial planet formation finished with the giant planets in their modern configuration.
View Full Publication open_in_new
Abstract
The late stages of terrestrial planet formation are dominated by giant impacts that collectively influence the growth, composition, and habitability of any planets that form. Hitherto, numerical models designed to explore these late stage collisions have been limited by assuming that all collisions lead to perfect accretion, and many of these studies lack the large number of realizations needed to account for the chaotic nature of N-body systems. We improve on these limitations by performing 280 simulations of planet formation around a Sun-like star, half of which used an N-body algorithm that has recently been modified to include fragmentation and hit-and-run (bouncing) collisions. We find that when fragmentation is included, the final planets formed are comparable in terms of mass and number; however, their collision histories differ significantly and the accretion time approximately doubles. We explored impacts onto Earth-like planets, which we parameterized in terms of their specific impact energies. Only 15 of our 164 Earth-analogs experienced an impact that was energetic enough to strip an entire atmosphere. To strip about half of an atmosphere requires energies comparable to recent models of the Moon-forming giant impact. Almost all Earth-analogs received at least one impact that met this criteria during the 2 Gyr simulations and the median was three giant impacts. The median time of the final giant impact was 43 Myr after the start of the simulations, leading us to conclude that the time-frame of the Moon-forming impact is typical among planetary systems around Sun-like stars.
View Full Publication open_in_new
Abstract
Venus currently rotates slowly, with its spin controlled by solid-body and atmospheric thermal tides. However, conditions may have been far different 4 billion years ago, when the Sun was fainter and most of the carbon within Venus could have been in solid form, implying a low-mass atmosphere. We investigate how the obliquity would have varied for a hypothetical rapidly rotating Early Venus. The obliquity variation structure of an ensemble of hypothetical Early Venuses is simpler than that Earth would have if it lacked its large moon (Lissauer et al., 2012), having just one primary chaotic regime at high prograde obliquities. We note an unexpected long-term variability of up to +/- 7 degrees for retrograde Venuses. Low-obliquity Venuses show very low total obliquity variability over billion-year timescales-comparable to that of the real Moon-influenced Earth.
View Full Publication open_in_new
Abstract
This paper examines the standard model of planet formation, including pebble accretion, using numerical simulations. Planetary embryos that are large enough to become giant planets do not form beyond the ice line within a typical disk lifetime unless icy pebbles stick at higher speeds than in experiments using rocky pebbles. Systems like the solar system (small inner planets and giant outer planets) can form if icy pebbles are stickier than rocky pebbles, and if the planetesimal formation efficiency increases with pebble size, which prevents the formation of massive terrestrial planets. Growth beyond the ice line is dominated by pebble accretion. Most growth occurs early, when the surface density of the pebbles is high due to inward drift of the pebbles from the outer disk. Growth is much slower after the outer disk is depleted. The outcome is sensitive to the disk radius and turbulence level, which control the lifetime and maximum size of pebbles. The outcome is sensitive to the size of the largest planetesimals because there is a threshold mass for the onset of pebble accretion. The planetesimal formation rate is unimportant, provided that some large planetesimals form while the pebbles remain abundant. Two outcomes are seen, depending on whether pebble accretion begins while the pebbles are still abundant. Either multiple gas-giant planets form beyond the ice line, small planets form close to the star, and a Kuiper-belt-like disk of bodies is scattered outward by the giant planets; or no giants form and the bodies remain an Earth-mass or smaller.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 302
  • Page 303
  • Page 304
  • Page 305
  • Current page 306
  • Page 307
  • Page 308
  • Page 309
  • Page 310
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025