Abstract
Grazing by microzooplankton has been shown to significantly impact freshwater cyanobacteria blooms; however, the contribution of rotifers to the overall effect of microzooplankton grazing is not well understood. We conducted monthly microzooplankton community grazing (dilution) experiments June-October 2019, concurrent with incubations of field-collected rotifers feeding upon the natural assemblage of microplankton prey < 75 mu m in Vancouver Lake (Washington State, USA), a lake annually affected by cyanobacteria blooms. Our results showed that just days after a large bloom, the microzooplankton community grazing impact on phytoplankton biomass was exceptionally high (> 1000% d(-1)), yet the impact by rotifers was low (< 1% d(-1)). As the bloom diminished in September and October, the grazing impact of rotifers increased dramatically, specifically consuming substantial dinoflagellate (<= 574%) and ciliate (<= 382%) biomass daily. Analysis of rotifers in Vancouver Lake during these months showed the presence of large, carnivorous Asplanchna spp., which indicates multi-trophic grazing dynamics within the rotifer assemblage. We conclude that non-rotifer micro-grazers (i.e., ciliates) were likely responsible for the initial dissipation of cyanobacteria just after the bloom peak, while rotifers primarily removed micro-grazers later in autumn. This study highlights the trophic roles of micro-grazers in controlling harmful cyanobacteria blooms and quantifies the specific grazing contributions of rotifers.