Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist’s conception of a disk of material surrounding a young star. Credit: Robin Dienel/Carnegie Science
    Breaking News
    January 22, 2026

    From Planets to Life - Humanity's Oldest Question

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    This 500-million-year-old trilobite from Utah has an organic-rich carapace that preserves a record of the original biomolecules. Credit: Robert Hazen.
    Breaking News
    November 17, 2025

    Chemical evidence of ancient life detected in 3.3-billion-year-old rocks

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A diamond cell optimized for single-crystal neutron diffraction is described. It is adapted for work at several of the single-crystal diffractometers of the Spallation Neutron Source and the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). A simple spring design improves portability across the facilities and affords load maintenance from offline pressurization and during temperature cycling. Compared to earlier prototypes, pressure stability of polycrystalline diamond (Versimax (R)) has been increased through double-conical designs and ease of use has been improved through changes to seat and piston setups. These anvils allow similar to 30%-40% taller samples than possible with comparable single-crystal anvils. Hydrostaticity and the important absence of shear pressure gradients have been established with the use of glycerin as a pressure medium. Large single-crystal synthetic diamonds have also been used for the first time with such a clamp-diamond anvil cell for pressures close to 20 GPa. The cell is made from a copper beryllium alloy and sized to fit into ORNL's magnets for future ultra-low temperature and high-field studies. We show examples from the Spallation Neutron Source's SNAP and CORELLI beamlines and the High Flux Isotope Reactor's HB-3A and IMAGINE beamlines. Published by AIP Publishing.
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
The validation of numerical models for large lakes is difficult because of sparse field observations. In this study, a Froude-Rossby scaled physical model of Lake Ontario, North America, is used to support numerical simulations. Experimental data are consistent with available field observations and provide a more comprehensive view of lake-wide features that include, in the absence of wind, strong eastward flows along both northern and southern shorelines, a large cyclonic gyre in the Rochester basin, and smaller midlake cyclonic eddies. With a west wind (most common direction), a well-defined westward flow in the middle of the lake separates an anticyclonic gyre in the north from a cyclonic gyre in the south. A review of numerical models shows that most models can capture general features of these observed patterns but do not always reproduce all details, especially in nearshore regions. A numerical model based on the Environmental Fluid Dynamics Code (EFDC), with a 200-m resolution in nearshore regions, is developed.
View Full Publication open_in_new
Abstract
There is an attempt by conventional oil and gas companies to reduce greenhouse gas emissions through sustainability practices to maintain a position of relevance in a low-carbon energy future. One of such measures is the idea of upstream energy integration (or field electrification), yet emerging and in its nascency. The concept of energy integration is to electrify upstream petroleum production operations through renewables to reduce carbon intensity and mitigate process emissions. While this seems promising, its dynamics and wider ramifications remain unexplored in the scholarly literature. Drawing on the socio-technical transition theory and adopting a qualitative approach to energy systems analysis, this perspective type piece identifies and discusses the implications of the emerging trend of upstream energy integration. The analysis proceeds with three thematic parallels and five central motifs that potentially set research and policy framing agendas to complement existing energy governance frameworks. These include Process energy needs, Resources and materials sourcing, Embodied energy implications, Scalar deployment costing and Temporal dynamics for transition (the PREST framework).
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 283
  • Page 284
  • Page 285
  • Page 286
  • Current page 287
  • Page 288
  • Page 289
  • Page 290
  • Page 291
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026