Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
Gmsh for Python Copyright: Open Access
View Full Publication open_in_new
Abstract
The validation of numerical models for large lakes is difficult because of sparse field observations. In this study, a Froude-Rossby scaled physical model of Lake Ontario, North America, is used to support numerical simulations. Experimental data are consistent with available field observations and provide a more comprehensive view of lake-wide features that include, in the absence of wind, strong eastward flows along both northern and southern shorelines, a large cyclonic gyre in the Rochester basin, and smaller midlake cyclonic eddies. With a west wind (most common direction), a well-defined westward flow in the middle of the lake separates an anticyclonic gyre in the north from a cyclonic gyre in the south. A review of numerical models shows that most models can capture general features of these observed patterns but do not always reproduce all details, especially in nearshore regions. A numerical model based on the Environmental Fluid Dynamics Code (EFDC), with a 200-m resolution in nearshore regions, is developed.
View Full Publication open_in_new
Abstract
There is an attempt by conventional oil and gas companies to reduce greenhouse gas emissions through sustainability practices to maintain a position of relevance in a low-carbon energy future. One of such measures is the idea of upstream energy integration (or field electrification), yet emerging and in its nascency. The concept of energy integration is to electrify upstream petroleum production operations through renewables to reduce carbon intensity and mitigate process emissions. While this seems promising, its dynamics and wider ramifications remain unexplored in the scholarly literature. Drawing on the socio-technical transition theory and adopting a qualitative approach to energy systems analysis, this perspective type piece identifies and discusses the implications of the emerging trend of upstream energy integration. The analysis proceeds with three thematic parallels and five central motifs that potentially set research and policy framing agendas to complement existing energy governance frameworks. These include Process energy needs, Resources and materials sourcing, Embodied energy implications, Scalar deployment costing and Temporal dynamics for transition (the PREST framework).
View Full Publication open_in_new
Abstract
The recent report (the Sixth Assessment Report of Working Group 1) of the Intergovernmental Panel on Climate Change clearly points to the urgency of global climate action. Optimal governance regimes are necessary for climate change mitigation in major greenhouse gas-emitting countries and economic sectors. Given our study's domain, the 'climate change governance' concept suffices as our theoretical framework. Adopting comparative legal and policy analysis and the case study approach, we examine the climate governance regimes in four regional carbon-intensive countries - South Africa, China, Germany, and the United States of America - with the primary objective of identifying areas for improving their regulatory capacity to mitigate climate change. Thus, we examine the relationship between climate policy goals/targets, the prevailing policy environment, and supportive strategies for achieving policy goals in our case study countries. Drawing on the climate governance literature, we adopt 'target setting', 'supportive measures/strategies', 'comprehensiveness', and 'oversight body' as the indices for our analysis. Our results reveal striking similarities and contrasts in the focus countries, signalling opportunities for improvements across different parameters. The study suggests the need for policy symmetry between governance (emissions reduction) goals and regime design elements such as proportional supportive strategies and comprehensive coverage of carbon-intensive economy sectors. We also canvass the necessity of avoiding policy and institutional fragmentations that hamper the emergence of clear and well-coordinated climate policy direction in countries. As climate change governance is now at a critical juncture, this study will significantly improve the regimes of our focus countries and other jurisdictions with similar peculiarities.
View Full Publication open_in_new
Abstract
Understanding the dynamic behaviour of Sub-Saharan African households as they move along the energy ladder is essential for the energy transition in developing countries. This study applies Fixed and Random effect panel data models to analyse the drivers of rural and urban households' energy transition in Nigeria from 2010 to 2018. The estimation results from the panel models with robust standard errors show that rural households tend to increase their expenses on fuel sources that potentially substitute the energy source whose prices have increased. However, there is no significant relationship between the price and expenditure on different fuels in urban households. Irrespective of spatiality, we find that aside from income - education, household size, and internet access are essential drivers of household fuel choices. More importantly, we find evidence of reverse energy transition. We argue that this reverse energy transition limits the shift to cleaner fuels and increases the economic vulnerabilities of rural households. Our analysis also reveals that Nigerians' preference for fuels is shifting to be price inelastic. We make a strong case for policies and interventions that raise household income, empower women, reduce the cost of living, and improve clean and affordable energy access to encourage energy transition.
View Full Publication open_in_new
Abstract
Lack of access to clean cooking energy systems negatively affects the health and welfare of millions of people in developing countries. Different factors such as household income, household size, fuel price, and information spread have been identified as barriers to the widespread uptake of clean cooking systems. However, analyses exploring the dynamic influences of these factors towards accelerating clean cooking from the long-term perspective are limited. Here, we employ a system dynamics modelling framework to simulate how various strategies could affect the adoption of clean cooking systems in Nigeria over time. Our results reveal that clean cooking adoption is a fluctuating process, and the trends present a non-linear behaviour. We found that the adoption of clean cooking energy systems would occur faster early in the simulating year among urban households than in rural households. The results indicate that, at low prices of liquefied petroleum gas, many rural households will switch to clean cookstoves with higher adoption rates than consumers in urban households. Additionally, results from baseline scenario analysis revealed that, without significant policy interventions, not all households would switch to clean cooking. Our analysis further indicates that households with fewer members tend to transition quicker to clean cooking options than larger households. The impact of clean cooking due to communication among households would be more significant among rural households than among urban households. While the model results are perceptive, we emphasise that potent policies are needed to accelerate the diffusion and adoption of clean cooking energy systems in Nigeria and other African countries. (C) 2022 The Society for Policy Modeling. Published by Elsevier Inc. All rights reserved..
View Full Publication open_in_new
Abstract
The cement sector in South Africa contributes approximately 1 % to the South African national green-house gas inventory. In line with the country's GDP increasing which will cause population to increase, the demand for housing, public and private structural infrastructures continues to increase. It is assumed that the demand for cement will also increase proportionally as well as its associated CO2 emission. The purpose of this study is to firstly; review previous energy modelling strategies in South Africa and specifically in the cement industry if any in order to examine the alignment of the cement industry's strategies with that of the South African government since becoming part of the Paris agreement signatories. Previous studies of energy efficiency, modelling, and GHG emissions were analyzed and reviewed for the understanding of the readiness of South Africa's cement industry to tackle her energy and global warming issues. South Africa is in a position to tackle the energy efficiency and GHG emissions problem through redesigning and consolidated critical data collection will, driven by the government and responsible stakeholders. Secondly; if any previous strategies are in place but in isolation, to examine the potential for long-term energy efficiency strategies and CO2 mitigation options for the cement sector in South Africa; as these two elements have a distinguishable link. Cement production is an energy-intensive process that consists of combustion-and process-related emissions. This study will employ-two modelling frameworks to examine strategies for reducing cement sector energy demand and associated CO2 emission for the period 2015 to 2050 (35 years) with 5-year intervals parallel to the Paris agreement. After reviewing energy models, the study will employ the low emissions analysis platform (LEAP) to model possible energy saving methods in the combustion process and other forms of energy supply in the context of South African cement sector. The existing reviewed methods and results will be compared and the LEAP will provide a second set of comparable results in order to influence policy and inform decision-making. For process-related emissions in the sector, the study will develop an excel-based model to examine possible strategies for reducing CO2 emission in the sector. The results will be examined in terms of cumulative energy savings, GHG emissions, and marginal abatement cost of carbon. (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Engineering for a Sustainable World.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 282
  • Page 283
  • Page 284
  • Page 285
  • Current page 286
  • Page 287
  • Page 288
  • Page 289
  • Page 290
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026