Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
In addition to its well-established role in plant development, the hormone cytokinin regulates plant responses to biotic and abiotic stresses. It was previously shown that cytokinin signaling acts negatively upon drought and osmotic stress tolerance and that gain-of-function of the cytokinin response regulator ARR1 causes osmotic stress hypersensitivity. Here we show that increased ARR1 action increases tolerance to heat shock and that this is correlated with increased accumulation of the heat shock proteins Hsp17.6 and Hsp70. These results show that the heat shock tolerance of plants can be elevated by increasing the expression of a cytokinin response activator.
View Full Publication open_in_new
Abstract
Aims. We study the stellar and dust properties of a well-defined sample of local elliptical galaxies to investigate the relationship between host galaxy properties and nuclear activity.
View Full Publication open_in_new
Abstract
In this work, the microalloying effect on glass-forming ability (GFA) has been investigated from the structural aspect, by performing synchrotron radiation X-ray diffraction and absorption measurements coupled with simulations in the NiNbZr ternary system. By sorting out the preferred Voronoi clusters, we propose a new structural parameter which counts the fraction of the five-connected shell atoms in clusters and find it is strongly associated with the GFA. In particular, this structural parameter has the highest value in a composition where the best GFA is achieved. The present work provides an in-depth understanding of microalloying-induced high GFAs in multicomponent alloys. (C) 2016 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Tunable symmetry breaking plays a crucial role for the manipulation of topological phases of quantum matter. Here, through combined high-pressure magnetotransport measurements, Raman spectroscopy, and x-ray diffraction, we demonstrate a pressure-induced topological phase transition in nodal-line semimetal ZrSiS. Symmetry analysis and first-principles calculations suggest that this pressure-induced topological phase transition may be attributed to weak lattice distortions by nonhydrostatic compression, which breaks some crystal symmetries, such as the mirror and inversion symmetries. This finding provides some experimental evidence for crystal symmetry protection for the topological semimetal state, which is at the heart of topological relativistic fermion physics.
View Full Publication open_in_new
Abstract
Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from deltaC-13PDB=-12.3 to -3.8 parts per thousand with a mean of -6.7 parts per thousand, a = 2.1 (n = 22) and a mode between -7 and -6 parts per thousand. This mean is within one standard deviation of the -4 parts per thousand mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in cratonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C - H - O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites.
View Full Publication open_in_new
Abstract
High-pressure angle-dispersive x-ray diffraction measurements have been performed on bulk and nanocrystalline cubic CeO2 with mean sizes of 4.7 and 5.6 nm. It is found that the compressibility of the nanocrystals is lower than the bulk when a threshold pressure is reached. This critical pressure is found to be 10 GPa for 4.7 nm and 16 GPa for 5.6 nm CeO2 nanocubes. The particle size dependence of the threshold pressure for the hardening of CeO2 nanoparticles is quite unusual. First-principles electronic calculations show that the increased bulk modulus of the nanocrystal is due to the strengthening of the surface Ce-O bonds resulting in a much larger shear modulus than in the bulk and consequently hardening the shell surface.
View Full Publication open_in_new
Abstract
Episodic ejection of plasma blobs has been observed in many black hole systems. While steady, continuous jets are believed to be associated with large-scale open magnetic fields, what causes the episodic ejection of blobs remains unclear. Here by analogy with the coronal mass ejection on the Sun, we propose a magnetohydrodynamical model for episodic ejections from black holes associated with the closed magnetic fields in an accretion flow. Shear and turbulence of the accretion flow deform the field and result in the formation of a flux rope in the disc corona. Energy and helicity are accumulated and stored until a threshold is reached. The system then loses its equilibrium and the flux rope is thrust outward by the magnetic compression force in a catastrophic way. Our calculations show that for parameters appropriate for the black hole in our Galactic centre, the plasmoid can attain relativistic speeds in about 35 min.
View Full Publication open_in_new
Abstract
We investigate the origin of the X-ray emission in low-luminosity active galactic nuclei (LLAGNs). Yuan and Cui predicted that the X-ray emission should originate from jets rather than an advection-dominated accretion flow (ADAF) when the X-ray luminosity L-X of the source is below a critical value of L-X,L-crit approximate to 10(-6)L(Edd). This prediction implies that the X-ray spectrum in such sources should be fitted by jets rather than ADAFs. Furthermore, below L-X,L-crit the correlation between radio (L-R) and X-ray (L-X) luminosities and the black hole mass (M)-the so-called fundamental plane of black hole activity-should deviate from the general correlation obtained by Merloni et al. and become steeper. The Merloni et al. correlation is described by logL(R) = 0.6logL(X) + 0.78logM + 7.33, while the predicted correlation is logL(R) = 1.23logL(X) + 0.25logM-13.45. We collect data from the literature to check the validity of these two expectations. We find that among the 16 LLAGNs with good X-ray and radio spectra, 13 are consistent with the Yuan and Cui prediction. For the 22 LLAGNs with L-X < L-X,L-crit, the fundamental plane correlation is described by logL(R) 1.22logL(X)+ 0.23logM-12.46, also in excellent agreement with the prediction.
View Full Publication open_in_new
Abstract
We investigate the observed correlation between the 2-10 keV X-ray luminosity (in unit of the Eddington luminosity; l(X) L-X/L-Edd) and the photon index (Gamma) of the X-ray spectrum for both black hole X-ray binaries (BHBs) and active galactic nuclei (AGNs). We construct a large sample, with 10(-9) less than or similar to l(X) less than or similar to 10(-1). We find that Gamma is positively and negatively correlated with l(X) when l(X) greater than or similar to 10(-3) and 10(-65) less than or similar to l(X) less than or similar to 10(-3), respectively, while Gamma is nearly a constant when l(X) less than or similar to 10(-6.5). We explain the above correlation in the framework of a coupled hot accretion flow-jet model. The radio emission always comes from the jet while the X-ray emission comes from the accretion flow and jet when l(X) is above and below 10(-6.5), respectively. More specifically, we assume that with the increase of mass accretion rate, the hot accretion flow develops into a clumpy and further a disc-corona two-phase structure because of thermal instability. We argue that such kind of two-phase accretion flow can explain the observed positive correlation.
View Full Publication open_in_new
Abstract
A new diamond cell with extreme apertures is described. It is tailored for a large variety of neutron scattering techniques such as inelastic neutron scattering and single-crystal diffraction both at the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor at the Oak Ridge National Laboratory. Simple springs enable forces of over 10 metric tons to be clamped in for low-temperature measurements. At present, low-cost polycrystalline diamond (Versimax((R))) pressure anvils are used. We predict a routine pressure regime up to 20GPa with sample volumes of approximate to 0.5mm(3). Future use of large CVD single-crystal diamond anvils will significantly expand this pressure range. We show examples for measurements at the SNAP, VISION and CORELLI beamlines of the SNS.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 280
  • Page 281
  • Page 282
  • Page 283
  • Current page 284
  • Page 285
  • Page 286
  • Page 287
  • Page 288
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025