Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Serotonin (5-hydroxytryptamine; 5-HT) synthesis and release are thought to be high during the day and low at night in the pineal. We identify a sharp rise in 5-HT synthesis and release soon after the lights are off during the dark phase of the circadian cycle, which precedes the nocturnal rise in melatonin synthesis and secretion. This tri-phasic 5-HT release, which consists of constant levels during the day, elevated levels at early night, a low level at late night, persists in the constant darkness, and is influenced strongly by light at night. The early nocturnal peak of 5-HT secretion is controlled directly by the sympathetic innervation originating from the superior cervical ganglion. We find that the marked decrease of 5-HT contents and release later at night is solely due to the consumption by melatonin synthesis and that the early nocturnal increase of 5-HT synthesis and release is independent of the melatonin synthesis. In the absence of melatonin synthesis, the tri-phasic 5-HT release becomes bi-phasic, with the nighttime level twice as high as that of the day value. We further demonstrate that the early night increase in 5-HT synthesis is controlled by beta-adrenergic receptor, and that the increased 5-HT release is mediated by alpha-adrenergic signaling. These observations suggest that 5-HT synthesis and secretion in the pineal is diurnally regulated independently of melatonin formation by adrenergic innervation, which may serve as a unique model system for investigating the regulation of 5-HT synthesis and release.
View Full Publication open_in_new
Abstract
The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-mum reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of similar to1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64 degrees in latitude x 1/32 degrees in longitude (I x 2 km(2) at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-mum reflectivity with an accuracy of 5% have also been obtained.
View Full Publication open_in_new
Abstract
Using on-line microdialysis, we have characterized in vivo dynamics of pineal 5-hydroxytryptamine (5-HT; serotonin) release. Daily pineal 5-HT output is triphasic: (i) 5-HT levels are constant and high during the day; (if) early in the night, there is a novel sharp rise in 5-HT synthesis and release, which precedes the nocturnal rise in melatonin synthesis; and (iii) late in the night, levels are low. This triphasic 5-HT production persists in constant darkness and is influenced strongly by intrusion of light at night. We demonstrate that both diurnal 5-HT synthesis and 5-HT release are activated by sympathetic innervation from the superior cervical ganglion and show that these processes are controlled by distinct receptors. The increase in 5-HT synthesis is controlled by beta-adrenergic receptors, whereas the increase in 5-HT release is mediated by a-adrenergic signaling. On the other hand, the marked decrease in 5-HT content and release late at night is a passive process, influenced by the extent of melatonin synthesis. In the absence of melatonin synthesis, the late-night decline in 5-HT release is prevented, reaching levels roughly twice as high as that of the day value. In summary, our results demonstrate that 5-HT levels display marked circadian rhythms that depend on adrenergic signaling.
View Full Publication open_in_new
Abstract
The 3-O-sulfotransferases (3OSTs) catalyze the addition of sulfate groups at the 3-OH site of glucosamine in heparan sulfate proteoglycans, which serve as critical mediators of various biological functions. We demonstrate that the 3OST2 isoform is expressed at high levels in the rat pineal specifically during the daylight hours. The dramatic diurnal rhythm of 3OST2 is regulated by central clock-controlled activities of the superior cervical ganglion, persists in constant darkness, and is inducible by light at nighttime. Importantly, 3OST2 transcription is blocked by beta-adrenergic agonists that activate the pineal melatonin formation and is induced by beta-adrenergic antagonists, which block melatonin production in vivo. Because of the inverse expression and regulation patterns of 3OST2 with serotortin N-acetyltransferase, the enzyme controlling the melatonin rhythm in the pineal, we tested the effects of forced expression of 3OST2 in the night pineals on N-acetyltransferase gene expression and melatonin production and found that, surprisingly, 3OST2 expression at night fails to interfere with melatonin synthesis. These data suggest 3OST2 may serve a unique function in the pineal that may be independent of melatonin formation.
View Full Publication open_in_new
Abstract
This study describes the development of a new technique for long-term measurement of daily 5-hydroxytryptamine (5-HT) and melatonin contents in the pineal gland of freely moving rats. The technique features a number of novel improvements over previous protocols. It allows visualization of the pineal gland for accurate targeting of the guide cannula, which minimizes bleeding; incurs no direct injury to the surrounding brain tissues; and causes no interference with the sympathetic innervation from the superior cervical ganglia. Robust releases of melatonin and indole precursors were continuously monitored quantitatively and reproducibly for more than 2 wk in the same animal. In addition, effects of pharmacological agents on in vivo pineal circadian rhythms can be studied reproducibly over time, and gene expression profiles can be correlated with physiological consequences in single animals. Using these approaches, it is found that beta -adrenergic activation leads to decreased release of 5-HT, and that increased cAMP signaling in vivo results in activation of N-acetyltransferase gene induction and melatonin production. These studies will enhance the understanding of signaling pathways that regulate pineal 5-HT and melatonin synthesis and secretion.
View Full Publication open_in_new
Abstract
A 3200- kilometers- long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans similar to 20% of the near- equatorial region of the planet. Topography along the profile is characterized by a 5.2- kilometer dynamic range and 930- meter root- mean- square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees, implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.
View Full Publication open_in_new
Abstract
In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibitor of DNA binding proteins. Overexpression and RNA interference suppression of ILI1 increase and reduce, respectively, rice laminar inclination, confirming a positive role of ILI1 in leaf bending. ILI1 and PRE1 interact with basic helix-loop-helix (bHLH) protein IBH1 (ILI1 binding bHLH), whose overexpression causes erect leaf in rice and dwarfism in Arabidopsis. Overexpression of ILI1 or PRE1 increases cell elongation and suppresses dwarf phenotypes caused by overexpression of IBH1 in Arabidopsis. Thus, ILI1 and PRE1 may inactivate inhibitory bHLH transcription factors through heterodimerization. BR increases the RNA levels of ILI1 and PRE1 but represses IBH1 through the transcription factor BZR1. The spatial and temporal expression patterns support roles of ILI1 in laminar joint bending and PRE1/AtIBH1 in the transition from growth of young organs to growth arrest. These results demonstrate a conserved mechanism of BR regulation of plant development through a pair of antagonizing HLH/bHLH transcription factors that act downstream of BZR1 in Arabidopsis and rice.
View Full Publication open_in_new
Abstract
Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 278
  • Page 279
  • Page 280
  • Page 281
  • Current page 282
  • Page 283
  • Page 284
  • Page 285
  • Page 286
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026