Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
This study describes the development of a new technique for long-term measurement of daily 5-hydroxytryptamine (5-HT) and melatonin contents in the pineal gland of freely moving rats. The technique features a number of novel improvements over previous protocols. It allows visualization of the pineal gland for accurate targeting of the guide cannula, which minimizes bleeding; incurs no direct injury to the surrounding brain tissues; and causes no interference with the sympathetic innervation from the superior cervical ganglia. Robust releases of melatonin and indole precursors were continuously monitored quantitatively and reproducibly for more than 2 wk in the same animal. In addition, effects of pharmacological agents on in vivo pineal circadian rhythms can be studied reproducibly over time, and gene expression profiles can be correlated with physiological consequences in single animals. Using these approaches, it is found that beta -adrenergic activation leads to decreased release of 5-HT, and that increased cAMP signaling in vivo results in activation of N-acetyltransferase gene induction and melatonin production. These studies will enhance the understanding of signaling pathways that regulate pineal 5-HT and melatonin synthesis and secretion.
View Full Publication open_in_new
Abstract
A 3200- kilometers- long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans similar to 20% of the near- equatorial region of the planet. Topography along the profile is characterized by a 5.2- kilometer dynamic range and 930- meter root- mean- square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees, implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.
View Full Publication open_in_new
Abstract
In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibitor of DNA binding proteins. Overexpression and RNA interference suppression of ILI1 increase and reduce, respectively, rice laminar inclination, confirming a positive role of ILI1 in leaf bending. ILI1 and PRE1 interact with basic helix-loop-helix (bHLH) protein IBH1 (ILI1 binding bHLH), whose overexpression causes erect leaf in rice and dwarfism in Arabidopsis. Overexpression of ILI1 or PRE1 increases cell elongation and suppresses dwarf phenotypes caused by overexpression of IBH1 in Arabidopsis. Thus, ILI1 and PRE1 may inactivate inhibitory bHLH transcription factors through heterodimerization. BR increases the RNA levels of ILI1 and PRE1 but represses IBH1 through the transcription factor BZR1. The spatial and temporal expression patterns support roles of ILI1 in laminar joint bending and PRE1/AtIBH1 in the transition from growth of young organs to growth arrest. These results demonstrate a conserved mechanism of BR regulation of plant development through a pair of antagonizing HLH/bHLH transcription factors that act downstream of BZR1 in Arabidopsis and rice.
View Full Publication open_in_new
Abstract
Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history.
View Full Publication open_in_new
Abstract
Measurements of surface reflectance of permanently shadowed areas near Mercury's north pole reveal regions of anomalously dark and bright deposits at 1064-nanometer wavelength. These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice. Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice, whereas dark regions are consistent with a surface layer of complex organic material that likely overlies buried ice and provides thermal insulation. Impacts of comets or volatile-rich asteroids could have provided both dark and bright deposits.
View Full Publication open_in_new
Abstract
The pressure-induced B3-B1 phase transition and some interesting thermodynamic properties for B3 structure of ideal stoichiometric technetium mononitride (TcN) have been studied systematically by first-principles calculations. It is found that TcN has a B3 ground-state phase at zero pressure and the transition pressure from B3 to B1 structure determined by the energy vs volume curves is about 35 GPa. Through the quasi-harmonic Debye model, the dependences of thermal expansion coefficient, constant volume heat capacity, and constant-pressure heat capacity of TcN with B3 phase on temperature up to 1600 K are successfully predicted at 0, 10, 20 and 35 GPa pressures, respectively. (C) 2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. (C) 2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C-11, C-12 and C-44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time. (C) 2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
This paper illustrates the potential for seasonal prediction of wind and solar energy resources through a case study in the Yangtze River estuary. Sea surface temperature and geopotential height-based climate predictors, each with high correlation to ensuing seasonal wind speed and solar radiation at the Baoshan weather observing station, are identified and used to build statistical models to predict seasonal wind speed and solar radiation. Leave-one-out-cross-validation is applied to verify the predictive skill of the best performing candidate model for each season. We find that predictive skill is highest for both wind speed and solar radiation during winter, and lowest during summer. Specifically, we find the most skill when using climate information from the July-September season to predict wind speed or solar radiation during the subsequent November-January season. The ability to predict wind and solar energy availability in the upcoming season can help energy system planners and operators anticipate seasonal surpluses or shortfalls and take precautionary actions.
View Full Publication open_in_new
Abstract
Estuaries at the global scale are significant but highly uncertain sources of atmospheric nitrous oxide (N2O), which is an intense greenhouse gas and ozone depletion agent. As the largest estuary in the United States, the Chesapeake Bay is suggested to be a spatially and temporally variable source and sink of N2O. However, limited observations of N2O cycling preclude us from estimating and predicting its net N2O flux. To improve our mechanistic understanding of the processes that control the N2O flux at the point of production, we applied multiple N-15 tracers (NH4+15$$ {}<^>{15}{\mathrm{NH}}_4<^>{+} $$, N-15-urea, NO2-15,$$ {}<^>{15}{\mathrm{NO}}_2<^>{-}, $$ and NO3-15$$ {}<^>{15}{\mathrm{NO}}_3<^>{-} $$) to separately track N2O production from nitrification and denitrification under in situ and manipulated O-2 concentrations in the Chesapeake Bay. Nitrification was the major N2O production pathway in oxic waters (up to 7.5 nmol N2O L-1 d(-1)). In contrast, denitrification dominated N2O production from hypoxic/anoxic waters (up to 20 nmol N2O L-1 d(-1)). N2O production from urea was observed for the first time in estuarine waters. The contribution from urea was small, but interestingly, showed a depth pattern distinct from other N2O precursors. Experimentally lowering the O-2 concentration substantially enhanced N2O production. Therefore, the expansion of hypoxic and anoxic zones in the Chesapeake Bay under climate change as suggested by some climate models may favor the production of N2O, potentially providing positive feedback on warming. Overall, our study provides mechanistic constraints on N2O dynamics that could benefit modeling studies to better estimate the N2O flux in the Chesapeake Bay and other coastal environments.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 278
  • Page 279
  • Page 280
  • Page 281
  • Current page 282
  • Page 283
  • Page 284
  • Page 285
  • Page 286
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025