Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's renditions of the space weather around M dwarf TIC 141146667.  The torus of ionized gas is sculpted by the star's magnetic field and rotation, with two pinched, dense clumps present on opposing sides of the star. Illustrations by Navid Marvi, courtesy Carnegie Science.
    Breaking News
    January 07, 2026

    Naturally occurring “space weather station” elucidates new way to study habitability of planets orbiting M dwarf stars

    Shreyas Vissapragada
    Breaking News
    December 19, 2025

    Shreyas Vissapragada selected for Forbes 30 Under 30 list

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Extrusion of viscous magma and the subsequent formation of a lava dome is often interspersed by short-lived vigorous (Vulcanian) explosions. The causes for and the timing of the transition from effusive to explosive activity during dome formation are poorly understood and forecasting this transition remains a challenge. Here, we describe and interpret a robust and unique multi-parameter data set documenting the subsurface processes associated with Vulcanian explosions at Soufriere Hills Volcano, Montserrat (W.I.) in July and December 2008. We quantify explosion priming by processes in either the shallow (< 2 km depth) or the deep magmatic system and quantify syn-eruptive processes. The July 29 explosion has a signature related exclusively to shallow dynamics including conduit destabilisation, syn-eruptive decompression and magma fragmentation, conduit emptying and expulsion of juvenile pumice. In contrast, the December 3 explosion was triggered by unprecedented sudden pressurisation of the entire plumbing system from depths of about 10 km (including the magma chambers) resulting in surficial dome carapace failure, a violent cannon-like explosion, propagation of pressure waves and pronounced ballistic ejection of dome fragments. With timescales for explosion priming on the order of a few minutes, the precursory geophysical signatures are indicative of the nature of ensuing Vulcanian explosions. The short precursory phases characterise Vulcanian explosions as freak events triggered by abrupt rather than gradual changes in subsurface dynamics. Our findings provide important constraints for theoretical and experimental investigations of the effusive to explosive transition, forecasting of Vulcanian explosions and volcanic risk mitigation. (C) 2011 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
The 15 March, 2007 Vulcanian paroxysm at Stromboli volcano was recorded by several instruments that allowed description of the eruptive sequence and unraveling the processes in the upper feeding system. Among the devices installed on the island, two borehole strainmeters recorded unique signals not fully explored before. Here we present an analysis of these signals together with the time-lapse images from a monitoring system comprising both infrared and visual cameras. The two strainmeter signals display an initial phase of pressure growth in the feeding system lasting similar to 2 min. This is followed by 25 s of low-amplitude oscillations of the two signals, that we interpret as a strong step-like overpressure building up in the uppermost conduit by the gas-rich magma accumulating below a thick pile of rock produced by crater rim collapses. This overpressure caused shaking of the ground, and triggered a number of small landslides of the inner crater rim recorded by the monitoring cameras. When the plug obstructing the crater was removed by the initial Vulcanian blast, the two strainmeter signals showed opposite sign, compatible with a depressurizing source at similar to 1.5 km depth, at the junction between the intermediate and shallow feeding system inferred by previous studies. The sudden depressurization accompanying the Vulcanian blast caused an oscillation of the source composed by three cycles of about 20 s each with a decreasing amplitude, as well recorded by the strainmeters. The visible effect of this behavior was the initial Vulcanian blast and a 2-3 km high eruptive column followed by two lava fountainings displaying decreasing intensity and height. To our knowledge, this is the first time that such a behavior was observed on an open conduit volcano. (C) 2012 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
In December 2008/January 2009 a 4-week episode of lava extrusion characterised by rapid dome growth and ground deflation occurred at Soufriere Hills Volcano (SHV), Montserrat W.I. Recorded strain dilatometer data show strain changes up to -3500 ns during this event. Modelling the collected data assuming existing structural models of the magmatic system, best-fit solutions are obtained for a simultaneous decompression of the shallow and the mid-crustal magma chambers together with a dilation of the shallow dyke-conduit. We interpret our model results as magma ascending from the two chambers into the eruption feeding dyke-conduit and partly extruding at the surface. Dome growth volume estimations from visual observations at SHV fit the extrusion volume inferred from our best-fit model and support our results. The reported data is the first set of geodetic data that documents the dynamic coupling within the entire crustal magmatic system of SHV. (C) 2012 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
We investigated the eruptive episodes that occurred at Etna volcano on 15 November 2011 and 18 March 2012 using different types of data. We present novel data from two recently installed strainmeters that recorded unique signals during the lava fountain phases of these events. The strainmeter data, integrated with those recorded by the magnetic network, and with satellite and ground thermal data, allowed us to follow the path of a gas-rich magma batch from the source inside the volcano to the surface and atmosphere. The amplitude ratio of the volumetric strain changes constrained the storage depth of the magma feeding the lava fountains above 1.5 km below sea level. Magnetic data revealed an attempted shallow lateral intrusion, whereas ground and satellite thermal data furnished a quantification of the total erupted volumes of similar to 2.2x10(6)m(3) for the 15 November event and similar to 3.0x10(6)m(3) for the 18 March event. Despite different durations of the explosive and effusive phases of the two lava fountain events, the total erupted volume was quite similar, suggesting the emptying of a shallow storage system displaying a steady behaviour.
View Full Publication open_in_new
Abstract
In January 2011, eruptive activity resumed at Etna producing a new phase with frequent lava fountain episodes until April 2012. In November 2011, the first two borehole strainmeters were installed, which detected negative strain changes (similar to 0.15-0.8 strain) during the paroxysmal events. A Finite Element Model was set up to estimate accurately the tilt and volumetric strain, taking into account the real profile of the volcano and the elastic medium heterogeneity. The numerical computations indicated an elongated depressurizing source located at 0 km b.s.l., which underwent a volume change of similar to 2 x 10(6) m(3) which is the most of the magma volume erupted, while a smaller remaining part is accommodated by the magma compressibility. This shallow source cannot accumulate large magma volumes and, thus, favors short-term periodic eruptive events with a fairly constant balance between the refilling and the erupted magma.
View Full Publication open_in_new
Abstract
A Sacks-Evertson borehole volumetric strainmeter (SE strainmeter) at a site located 105 km from the epicenter of the mainshock recorded a clear slow strain event following the 2003 M-w 8.0 Tokachi-oki earthquake (September 25, 2003, 19:50:06 UTC). This consisted of an episode of contraction for 4 days followed by expansion for 23 days. GPS sites in southeastern Hokkaido also recorded displacement changes during the same time interval. We use quasi-static calculations to generate synthetic waveforms for the measured quantities. All the data are satisfied by a propagating line source 2-stage model of slow reverse slip, uniform amplitude of 50 cm, with rupture propagation velocities of constant 9 cm/s (first stage) and exponentially decreasing from 3 to 0.7 cm/s (second stage). This post-seismic slip event is taken to be coplanar with the main shock rupture on the upper plane of the double Wadati-Benioff seismic zone (DSZ), and largely overlaps the seismic rupture. Regular earthquakes release only about 30% of the plate motion in this section of the subduction zone; post-seismic slip appears to account for at least some of the deficit.
View Full Publication open_in_new
Abstract
Strain dilatometers have been operated on the volcanic island of Montserrat (West Indies) for more than a decade and have proven to be a powerful technique to approach short-term dynamics in the deformational field in response to pressure changes in the magmatic system of the andesitic dome-building Soufriere Hills Volcano (SHV). We here demonstrate that magmatic activity in each of the different segments of the SHV magmatic system (shallow dyke-conduit, upper and lower magma chambers) generates a characteristic strain pattern that allows the identification of operating sources in the plumbing system based on a simple scheme of amplitude ratios. We use this method to evaluate strain data from selected Vulcanian explosions and gas emission events that occurred at SHV between 2003 and 2012. Our results show that the events were initiated by a short phase of contraction of either one or both magma chambers and a simultaneous inflation of the shallow feeder system. The initial phase of the events usually lasted only tens to hundreds of seconds before the explosion/gas emission started and the system recovered. The short duration of this process points at rapid transport of fluids rather than magma ascent to generate the pressure changes. We suggest the propagation of tensile hydraulic fractures as viable mechanism to provide a pathway for fluid migration in the magmatic system at the observed time scale. Fluid mobilization was initiated by a sudden destabilization of large pockets of already segregated fluid in the magma chambers. Our study demonstrates that geodetic observables can provide unprecedented insights into complex dynamic processes within a magmatic system commonly assessed by theoretical modeling and petrologic observations.
View Full Publication open_in_new
Abstract
The 23 November 2013 lava fountain at Etna volcano was the most explosive of the last 44 episodes that have occurred at Etna in 2011-2013. We infer the total magma volume erupted by thermal images analysis and show that it was characterized by a very high time-averaged-discharge-rate (TADR) of similar to 360 m(3) s(-1), having erupted similar to 1.6 x 10(6) m(3) of dense-rock equivalent magma volume in just 45 min, which is more than 3 times the TADR observed during previous episodes. Two borehole dilatometers confirmed the eruption dynamics inferred from the thermal images. When compared to the other lava fountains, this episode can be considered as the explosive end-member. However, the erupted volume was still comparable to the other lava fountain events. We interpret that the 23 November explosive end-member event was caused by more primitive and gas-rich magma entering the system, as demonstrated by the exceptional height reached by the lava fountain.
View Full Publication open_in_new
Abstract
High-resolution borehole strainmeters are usually installed in tectonically active regions in order to detect slow-slip events, and to estimate slow transients related to earthquake swarms. However, they are also sensitive to other numerous influences, internal or external. Furthermore, the quality of their coupling to the rock through cementation, and the mechanical properties of the rock mass around them, have a critical influence on their records. Many of the existing strainmeters present such problems, and the correction for these effects often remains a challenge. In this paper, we present the analysis of the records of a high-resolution borehole dilatometer (Sacks-Evertson), located in the seismically active rift of Corinth (Greece) (station TRZ in the Trizonia island). We show that the instrument suffers from an only partial-solid coupling, and that the nearby sea tides have a direct (through elastic response) and indirect (through pore-pressure diffusion) effect on the dilatation signal, which adds up to the solid tidal strain source. We propose a methodology that allows, in a first step, to better separate the internal (solid tide) from the external (air pressure, sea level) influences, by calculating a frequency-dependent transfer function outside the range of the tidal periods. We then extrapolate this function, in particular at the tidal periods. In a second step, the resulting variation with frequency of the coupling coefficients with sea level led us to estimate the proportion of instrument not solidly cemented to rock (thus in contact with water pore pressure), which is about 90 % of the total height. Despite the small proportion of solid coupling, the sensor resolution remains very good up to a few tens of hours of a time period, thanks to the confining effects of the rocks on the local pore pressure. These results allow us to correct for the external effects, and reduce the associated variance by 80-90 % (in the period range of minutes to days). The empirical correction of the sea level effect could be explained using a simple Boussinesq's approximation and 1D pore-pressure diffusion model, which contributed to better constraint of some of the poro-elastic parameters in the vicinity of the instrument. After correction, the solid tidal signal at the 24-h period is almost anti-correlated with those of the theoretical solid tide. This surprising result is consistent with a similar anti-correlation observed for the longest period surface waves (200 s) comparing the TRZ dilatometer signals to the strain measured by a nearby borehole strainmeter (MOK, 15 km). This could be related to the presence of a shallow fault close to the instrument, which would creep in response to seismic wave-related stress.
View Full Publication open_in_new
Abstract
Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since 2003. Liu et al. (2009) proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges -1 to -3 nanostrain/millibar(hPa) and -0.3 to -1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about -5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is not anticipated from our estimates of the precipitation transfer function) that are more readily explained in terms of tectonic-origin motions, but clearly the triggering argument is now weaker than that presented in Liu et al. (2009). Additional on-site water level sensors and rain gauges will provide data critical for a more complete understanding, including the currently unresolved issue of why, for some typhoons, there appears to be a much smaller transfer function for precipitation-induced strain changes.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 287
  • Page 288
  • Page 289
  • Page 290
  • Current page 291
  • Page 292
  • Page 293
  • Page 294
  • Page 295
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026