Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 16

    7:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The "new core paradox" suggests that the persistence of the geomagnetic field over nearly all of Earth history is in conflict with the core being highly thermally conductive, which makes convection and dynamo action in the core much harder prior to the nucleation of the inner core. Here we revisit this issue by exploring the influence of six important parameters on core evolution: upper/lower mantle viscosity ratio, core thermal conductivity, core radiogenic heat rate, mantle radiogenic heating rate, central core melting temperature, and initial core-mantle boundary (CMB) temperature. Each parameter is systematically explored by the model, which couples mantle energy and core energy-entropy evolution. A model is successful if the correct present-day inner core size is achieved and the dynamo remains alive, as implied by the paleomagnetic record. In agreement with previous studies, we do not find successful thermal evolutions using nominal parameters, which includes a core thermal conductivity of 70 Wm(-1)K(-1), zero core radioactivity, and an initial CMB temperature of 5,000 K. The dynamo can be kept alive by assuming an unrealistically low thermal conductivity of 20 Wm(-1)K(-1) or an unrealistically high core radioactive heat flow of 3 TW at present-day, which are considered "unsuccessful" models. We identify a third scenario to keep the dynamo alive by assuming a hot initial CMB temperature of similar to 6,000 K and a central core liquidus of similar to 5,550 K. These temperatures are on the extreme end of typical estimates, but should not be ruled out and deserve further scrutiny.
View Full Publication open_in_new
Abstract
Future direct imaging missions similar to the HabEx and LUVOIR mission concepts aim to catalog and characterize Earth-mass analogs around nearby stars. The exoplanet yield of these missions will be dependent on the frequency of Earth-like planets, and potentially the a priori knowledge of which stars specifically host suitable planetary systems. Ground- or space-based radial velocity surveys can potentially perform the pre-selection of targets and assist in the optimization of observation times, as opposed to an uninformed direct imaging survey. In this paper, we present our framework for simulating future radial velocity surveys of nearby stars in support of direct imaging missions. We generate lists of exposure times, observation time-series, and radial velocity time-series given a direct imaging target list. We generate simulated surveys for a proposed set of telescopes and precise radial velocity spectrographs spanning a set of plausible global-network architectures that may be considered for next-generation extremely precise radial velocity surveys. We also develop figures of merit for observation frequency and planet detection sensitivity, and compare these across architectures. From these, we draw conclusions, given our stated assumptions and caveats, to optimize the yield of future radial velocity surveys supporting direct imaging missions. We find that all of our considered surveys obtain sufficient numbers of precise observations to meet the minimum theoretical white noise detection sensitivity for Earth-mass habitable-zone planets. While our detection rates and mass-sensitivity are optimistic, we have margin to explore systematic effects due to stellar activity and correlated noise in future work.
View Full Publication open_in_new
Abstract
Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.
View Full Publication open_in_new
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
View Full Publication open_in_new
Abstract
NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here we present 20 hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program. These 20 planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976b, the longest-period planet in our sample (P = 6.6 days), may be on a moderately eccentric orbit (e = 0.18 +/- 0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hr orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well aligned with the stellar spin axis ( divide lambda divide = 4.degrees 0 +/- 3.degrees 5). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.
View Full Publication open_in_new
Abstract
The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with 72-12+10 r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color-magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming & SIM;80% of the stars in the galaxy, while the remainder of the stars formed similar to 3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 +/- 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more, such as GW170817.
View Full Publication open_in_new
Abstract
The ultrafaint dwarf galaxy Reticulum II was enriched by a single rare and prolific r-process event. The r-process content of Reticulum II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find 72-(+10)(12)% of the 10 -stars are r-process-enhanced, with a mean ([Ba / H]) =-1.68 + 0.07 and unresolved intrinsic dispersion sigma([Ba/H])< 0.20. The homogeneous r-process abundances imply that Ret II's metals are well mixed by the time the r- enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultrafaint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r-process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r-enhanced stars in Ret II formed in the absence of substantial pristine gas accretion, perhaps indicating that asymptotic to 70% of Ret II stars formed after reionization.
View Full Publication open_in_new
Abstract
We present multiwavelength time-series spectroscopy of SN 2013aa and SN 2017cbv, two Type Ia supernovae (SNe Ia) on the outskirts of the same host galaxy, NGC 5643. This work utilizes new nebular-phase near-infrared (NIR) spectra obtained by the Carnegie Supernova Project-II, in addition to previously published optical and NIR spectra. Using nebular-phase [Fe ii] lines in the optical and NIR, we examine the explosion kinematics and test the efficacy of several common emission-line-fitting techniques. The NIR [Fe ii] 1.644 mu m line provides the most robust velocity measurements against variations due to the choice of the fit method and line blending. The resulting effects on velocity measurements due to choosing different fit methods, initial fit parameters, continuum and line profile functions, and fit region boundaries were also investigated. The NIR [Fe ii] velocities yield the same radial shift direction as velocities measured using the optical [Fe ii] lambda 7155 line, but the sizes of the shifts are consistently and substantially lower, pointing to a potential issue in optical studies. The NIR [Fe ii] 1.644 mu m emission profile shows a lack of significant asymmetry in both SNe, and the observed low velocities elevate the importance for correcting for any velocity contribution from the host galaxy's rotation. The low [Fe ii] velocities measured in the NIR at nebular phases disfavor progenitor scenarios in close double-degenerate systems for both SN 2013aa and SN 2017cbv. The time evolution of the NIR [Fe ii] 1.644 mu m line also indicates moderately high progenitor white dwarf central density and potentially high magnetic fields.
View Full Publication open_in_new
Abstract
The earliest stages of star formation, when young stars are still deeply embedded in their natal clouds, represent a critical phase in the matter cycle between gas clouds and young stellar regions. Until now, the high-resolution infrared observations required for characterizing this heavily obscured phase (during which massive stars have formed, but optical emission is not detected) could only be obtained for a handful of the most nearby galaxies. One of the main hurdles has been the limited angular resolution of the Spitzer Space Telescope. With the revolutionary capabilities of the James Webb Space Telescope (JWST), it is now possible to investigate the matter cycle during the earliest phases of star formation as a function of the galactic environment. In this Letter, we demonstrate this by measuring the duration of the embedded phase of star formation and the implied time over which molecular clouds remain inert in the galaxy NGC 628 at a distance of 9.8 Mpc, demonstrating that the cosmic volume where this measurement can be made has increased by a factor of > 100 compared to Spitzer. We show that young massive stars remain embedded for 5.1(-1.4)(+2.7) Myr (2.3(-1.4)(+2.7) Myr of which being heavily obscured), representing similar to 20% of the total cloud lifetime. These values are in broad agreement with previous measurements in five nearby (D < 3.5 Mpc) galaxies and constitute a proof of concept for the systematic characterization of the early phase of star formation across the nearby galaxy population with the PHANGS-JWST survey.
View Full Publication open_in_new
Abstract
The earliest stages of star formation occur enshrouded in dust and are not observable in the optical. Here we leverage the extraordinary new high-resolution infrared imaging from JWST to begin the study of dust-embedded star clusters in nearby galaxies throughout the Local Volume. We present a technique for identifying dust-embedded clusters in NGC 7496 (18.7 Mpc), the first galaxy to be observed by the PHANGS-JWST Cycle 1 Treasury Survey. We select sources that have strong 3.3 mu m PAH emission based on a F300M - F335M color excess and identify 67 candidate embedded clusters. Only eight of these are found in the PHANGS-HST optically selected cluster catalog, and all are young (six have SED fit ages of similar to 1 Myr). We find that this sample of embedded cluster candidates may significantly increase the census of young clusters in NGC 7496 from the PHANGS-HST catalog; the number of clusters younger than similar to 2 Myr could be increased by a factor of 2. Candidates are preferentially located in dust lanes and are coincident with the peaks in the PHANGS-ALMA CO (2-1) maps. We take a first look at concentration indices, luminosity functions, SEDs spanning from 2700 angstrom to 21 mu m, and stellar masses (estimated to be between similar to 10(4) and 10(5) M (circle dot)). The methods tested here provide a basis for future work to derive accurate constraints on the physical properties of embedded clusters, characterize the completeness of cluster samples, and expand analysis to all 19 galaxies in the PHANGS-JWST sample, which will enable basic unsolved problems in star formation and cluster evolution to be addressed.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 225
  • Page 226
  • Page 227
  • Page 228
  • Current page 229
  • Page 230
  • Page 231
  • Page 232
  • Page 233
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025