Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Anoxic marine zones (AMZs) are host to anaerobic metabolisms that drive losses of bioavailable nitrogen from the ocean. The discovery of active nitrite-oxidising bacteria (NOB), long thought to be obligately aerobic, in AMZs has altered our perception of how nitrogen cycles in these oxygen-deficient waters. Yet, why NOB succeed in AMZs remains unclear. Here, we show that obligately aerobic NOB can thrive alongside aerobic microheterotrophs in AMZs via infrequent intrusions of oxygen. Ecological theory, biogeochemical modelling and metagenome-based maximum growth rate estimates suggest that NOB are opportunists that take advantage of periodic oxygen intrusions to rapidly accumulate biomass. Rather than harsh, AMZs prone to oxygen intrusions appear optimal for NOB, whose abundance and activity peaks in a goldilocks zone of periodic oxygen and high nitrite supply. Our results recast the intermediate disturbance hypothesis to AMZs and highlight how the nitrogen cycle relies on dynamic coexistence of aerobic and anaerobic metabolisms.
View Full Publication open_in_new
Abstract
Nitrous oxide (N2O), a potent greenhouse gas in the atmosphere, is produced mostly from aquatic ecosystems, to which algae substantially contribute. However, mechanisms of N2O production by photosynthetic organisms are poorly described. Here, we show that the green microalga Chlamydomonas reinhardtii reduces NO into N2O using the photosynthetic electron transport. Through the study of C. reinhardtii mutants deficient in flavodiiron proteins (FLVs) or in a cytochrome p450 (CYP55), we show that FLVs contribute to NO reduction in the light, while CYP55 operates in the dark. Furthermore, NO reduction by both pathways is restricted to Chlorophytes, organisms particularly abundant in ocean N2O-producing hotspots. Our results provide a mechanistic understanding of N2O production in eukaryotic phototrophs and represent an important step toward a comprehensive assessment of greenhouse gas emission by aquatic ecosystems.One sentence summaryGreen microalgae produce N2O using flavodiiron proteins in the light and a cytochrome P450 NO reductase in the dark.
View Full Publication open_in_new
Abstract
Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.
View Full Publication open_in_new
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2. However, in the environment, light energy fluctuates rapidly and often exceeds saturating levels for periods ranging from seconds to hours, which can lead to detrimental effects for cells. Safe dissipation of excess light energy occurs primarily by non-photochemical quenching (NPQ) processes. In the model green microalga Chlamydomonas reinhardtii, photoprotective NPQ is mostly mediated by pH-sensing light-harvesting complex stress-related (LHCSR) proteins and the redistribution of light-harvesting antenna proteins between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to the dynamic functioning of NPQ under fluctuating light conditions remains unknown. Here, by monitoring NPQ throughout multiple high light-dark cycles with fluctuation periods ranging from 1 to 10 minutes, we show that the dynamics of NPQ depend on the frequency of light fluctuations. Mutants impaired in the accumulation of LHCSRs (npq4, lhcsr1, and npq4lhcsr1) showed significantly less quenching during illumination, demonstrating that LHCSR proteins are responsible for the majority of NPQ during repetitive exposure to high light fluctuations. Activation of NPQ was also observed during the dark phases of light fluctuations, and this was exacerbated in mutants lacking LHCSRs. By analyzing 77K chlorophyll fluorescence spectra and chlorophyll fluorescence lifetimes and yields in a mutant impaired in state transition, we show that this phenomenon arises from state transition. Finally, we quantified the contributions of LHCSRs and state transition to the overall NPQ amplitude and dynamics for all light periods tested and compared those with cell growth under various periods of fluctuating light. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment. One sentence summary: The roles of LHCSR and STT7 in NPQ vary with the light fluctuation period and duration of light fluctuation.
View Full Publication open_in_new
Abstract
Photosynthetic organisms have developed sophisticated strategies to fine-tune light energy conversion to meet the metabolic demand, thereby optimizing growth in fluctuating light environments. Although mechanisms such as energy dissipation, photosynthetic control, or the photosystem II (PSII) damage and repair have been widely studied, little is known about the regulation of protein synthesis capacity during light acclimation. By screening a Chlamydomonas reinhardtii insertional mutant library using chlorophyll fluorescence imaging, we isolated a high chlorophyll fluorescence mutant (hf0) defected in a gene encoding a putative plastid targeted DEAD-box RNA helicase called CreRH22. CreRH22 is rapidly induced upon illumination and belongs to the GreenCut, a set of proteins specific to photosynthetic organisms. While photosynthesis is slightly affected in the mutant under low light (LL), exposure to high light (HL) induces a marked decrease in both PSII and PSI, and a strong alteration of the light-induced gene expression pattern. These effects are explained by the inability of hf0 to increase plastid ribosome amounts under HL. We conclude that CreRH22, by promoting ribosomal RNA precursor maturation in a light-dependent manner, enables the assembly of extra ribosomes required to synthesize photosystem subunits at a higher rate, a critical step in the acclimation of algae to HL.
View Full Publication open_in_new
Abstract
The maize female gametophyte is comprised of four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In maize, these cells are produced after three rounds of free-nuclear divisions followed by cellularization, differentiation, and proliferation of the antipodal cells. Cellularization of the eight-nucleate syncytium produces seven cells with two polar nuclei in the central cell. Nuclear localization is tightly controlled in the embryo sac as evidenced by the regular, stereotypical position of the nuclei in all syncytial stages of female gametophyte development. This leads to precise allocation of the nuclei into the cells upon cellularization. Nuclear positioning within the syncytium is highly correlated with their identity after cellularization. Two mutants are described with extra polar nuclei, abnormal antipodal cell morphology, and reduced antipodal cell number, which is correlated with a frequent loss of auxin signaling in the antipodal cell cluster. Mutations in one of these genes, indeterminate gametophyte2 encoding a MICROTUBULE ASSOCIATED PROTEIN65-3 homolog, shows a requirement for MAP65-3 in cellularization of the syncytial embryo sac and that the identity of the nuclei in the syncytial female gametophyte can be changed very late before cellularization.
View Full Publication open_in_new
Abstract
Photosynthetic algae cope with suboptimal levels of light and CO2. In low CO2 and excess light, the green alga Chlamydomonas reinhardtii activates a CO2 Concentrating Mechanism (CCM) and photoprotection; the latter is mediated by LHCSR1/3 and PSBS. How light and CO2 signals converge to regulate photoprotective responses remains unclear. Here we show that excess light activates expression of photoprotection-and CCM-related genes and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3 and CCM genes while stabilizing the LHCSR1 protein. We also show that CIA5, which controls CCM genes, is a major regulator of photoprotection, elevating LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 accumulation. Our work emphasizes the importance of CO2 in regulating photoprotection and the CCM, demonstrating that the impact of light on photoprotection is often indirect and reflects intracellular CO2 levels.
View Full Publication open_in_new
Abstract
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce non-photochemical quenching to avoid photo-damage and trigger expression of ‘photoprotective’ genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, wavelength, photosynthetic electron transport and CO2 on induction of the ‘photoprotective’ genes (LHCSR1, LHCSR3 and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity, was independently modulated by blue and UV-B radiation through specific photoreceptors, and only LHCSR3 was strongly controlled by CO2 levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
View Full Publication open_in_new
Abstract
Photosynthetic organisms frequently experience abiotic stresses that restrict their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers, photosystems I and II (PSI and PSII), resulting in a decline in primary productivity. This work describes a biological ‘switch’ in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f complex when reductant and ATP generated by PET are in excess of the capacity of carbon metabolism to utilize these products; we specifically show a restriction at this switch when sta6 mutant cells, which cannot synthesize starch, are limited for nitrogen (growth inhibition) and subjected to a dark-to-light transition. This restriction, which may be a form of photosynthetic control, causes diminished electron flow to PSI, which prevents PSI photodamage. When electron flow is blocked the plastid alternative oxidase (PTOX) may also become activated, functioning as an electron valve that dissipates some of the excitation energy absorbed by PSII thereby lessening PSII photoinhibition. Furthermore, illumination of the cells following the dark acclimation gradually diminishes the restriction at cytochrome b6f complex. Elucidating this photoprotective mechanism and its modulating factors may offer new insights into mechanisms associated with photosynthetic control and offer new directions for optimizing photosynthesis.
View Full Publication open_in_new
Abstract
Photosynthetic eukaryotic organisms contain several chloroplast-associated metabolite transporters that enable energetic/metabolic exchange between the chloroplast and other cellular compartments. In this study, we used the model photosynthetic alga Chlamydomonas reinhardtii to investigate a highly expressed chloroplast triose phosphate transporter. The triose phosphate/phosphate translocator 3 (CreTPT3), located on the Chlamydomonas chloroplast envelope, was found to be highly expressed under both non-stressed/stressed conditions (RNA level) and was characterized for substrate specificity in vitro using a yeast liposome uptake system. The CreTPT3 transporter showed high DHAP and 3-PGA transport activities, but little activity with PEP. Null mutants for CreTPT3, generated by CRISPR-Cas9 editing of the CreTPT3 gene, resulted in a pleiotropic phenotype impacting photosynthetic activity, metabolite pools, carbon partitioning, and storage, the redox status of the chloroplast, and the accumulation of reactive oxygen species. The results presented demonstrate that CreTPT3 is a major conduit on the chloroplast envelope for the intracellular distribution of fixed carbon and reductant generated by photosynthetic electron transport. Its function is critical for optimizing the use of resources supporting cell fitness, especially as light intensities increase, the rate of photosynthetic CO2 fixation is elevated and the chloroplast environment becomes highly reducing.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 222
  • Page 223
  • Page 224
  • Page 225
  • Current page 226
  • Page 227
  • Page 228
  • Page 229
  • Page 230
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025